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Summary   

This report presents the technical specification of the software tool for managing complex planar fuzzy spatial models.  

Specification is done according to the state-of-the-art open-source software components for the spatial modeling, GEOS 

architecture, OpenML approach and cloud-based service best practices. UML language was used for modeling. This soft-

ware tool is the one of the key components in the ATLAS platform.  
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1. Introduction 

In addition to functionalities comprising previously proposed fuzzy models of complex planar objects, our model of the 

software tool introduced two ontological models. The first model is an ontology of geospatial data which provides the 

semantic foundation of geospatial data integration and sharing. To manage uncertainties in data, the original ontology 

proposed in the paper “Geospatial data ontology: the semantic foundation of geospatial data integration and sharing” (2019) 

[1] was extended with elements that support fuzzy semantics of geospatial data relations. The second model is an ontology 

that describes Machine Learning domain [2]. The basis which we adopted for our software tool is an ontology described 

in the paper “A Machine Learning Ontology” (2020) [3], which consists of seven top classes (Algorithms, Applications, 

Dependencies, Dictionary, Frameworks, Involved, and MLTypes). We have modified this model to enable fuzzy descrip-

tions of the classes Algorithms, Applications, Dependencies, and Frameworks expressing their suitability for the specific 

ML task. 

This report consists of four sections. Following this introduction, several definitions and preliminaries related to imprecise 

spatial relations are presented in Section II. Section III Software specification is main part of this document and it contains 

main use-cases, architectural design, server and client packages and modules. Finally, Section IV contains concluding 

remarks. 

2. Ontology based modeling of Complex planar fuzzy spatial models 

In this section we are analyzing linear fuzzy space considering its applicability to spatial and temporal modelling. First 

subsection presents utilization of the linear fuzzy space for spatial modelling, while the second subsection considers its 

application to temporal modelling. 

2.1. Spatial modelling - Model of 2D fuzzy spatial relations 

In this subsection we present a model of fuzzy spatial relations, which can be used to describe imprecise spatial data from 

2D images thus enabling semantic interpretation of images. Figure 1 represents the ontology of fuzzy spatial relations 

proposed in [4].  
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Figure 1 Ontology of fuzzy spatial relations 

The ontology contains following basic concepts: 

 SpatialRelation – fuzzy spatial relation. 

 SpatialObject – fuzzy spatial object (for example, a fuzzy polygon in linear fuzzy space as defined in [7]). 

 ReferenceSystem – reference system in which spatial relation is described (one spatial relation can be described 

in many ways, depending on the view perspective). 

 TargetObject – instance of the SpatialObject concept. Represents the object for which spatial relation is deter-

mined with respect to some ReferenceObject which is also an instance of the SpatialObject concept. 

 DirectionalRelation – concept that extends SpatialRelation concept. Allows modelling of unary spatial relation 

that represents position of a target object on the image. 

 BinarySpatialRelation – concept that extends SpatialRelation concept. Allows modelling of binary spatial rela-

tions between reference and target object. 

 BinaryDirectionalRelation – concept that extends BinarySpatialRelation. Allows modelling of position of target 

object with respect to reference object, e.g. “left of”, “above”, etc. 

 DistanceRelation – concept that extends BinarySpatialRelation. Allows modelling of distance of target object 

from reference object, e.g. “(very) close to”, “at distance of…”, etc. 

Using these basic concepts of fuzzy spatial relations and concepts of linear fuzzy space (fuzzy point, distance, fuzzy poly-

gon) we have defined following models for elementary spatial relations [markov master rad, sisy2013]. 

Definition 1. Let 𝑃 be a two-dimensional matrix which represents digital image. We call the fuzzy set 𝐹 a fuzzy spatial 

relation if its membership function μF maps every element 𝑃[𝑖, 𝑗] of the matrix P in the interval [0,1]: 
𝜇𝐹(𝑃[𝑖, 𝑗]): 𝑃 → [0,1] 

Definition 2. Let 𝑃 be a two-dimensional matrix that represents digital image, whose width and height are 𝑤 and ℎ, re-

spectively. Then, for every pixel 𝑃[𝑖, 𝑗] determined by coordinates 𝑖 and 𝑗, the membership function value of the fuzzy 

spatial relation AtLeft (“at left side of the image”) is calculated as: 
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𝜇𝐴𝑡𝐿𝑒𝑓𝑡,𝑑,𝑔(𝑃[𝑖, 𝑗]) = {

1,                 𝑖𝑓 𝑖 ≤ 𝑑

1 − (𝑖 − 𝑑)) 𝑔,      𝑖𝑓 𝑑 < 𝑖 ≤ 𝑑 + 𝑔⁄

  0,                        𝑖𝑓 𝑖 > 𝑑 + 𝑔
 

where 𝒅 is a constant which defines the core, and 𝒈 is a constant that defines the fuzziness of this fuzzy set. 

Definition 3. Let 𝑃 be a two-dimensional matrix that represents digital image, whose width and height are 𝑤 and ℎ, re-

spectively. Then, for every pixel 𝑃[𝑖, 𝑗]  determined by coordinates 𝑖 and 𝑗, the membership function value of the AtBottom 

(“at bottom of the image”) fuzzy spatial relation is calculated as: 

𝜇𝐴𝑡𝐵𝑜𝑡𝑡𝑜𝑚,𝑑,𝑔(𝑃[𝑖, 𝑗]) = {

1,                                    𝑖𝑓 𝑗 < 𝑑 − 𝑔

(𝑗 − (𝑑 − 𝑔)) 𝑔,      𝑖𝑓 𝑑 − 𝑔 ≤ 𝑗 < 𝑑⁄

0,                                            𝑖𝑓 𝑗 ≥ 𝑑
 

where 𝒅 is a constant which defines the core, and 𝒈 is a constant that defines the fuzziness of this fuzzy set. 

Fuzzy spatial relations AtRight and AtTop can be defined in analogous manner. 

 

Definition 4. Let 𝑃 be a two-dimensional matrix that represents digital image, whose width and height are 𝑤 and ℎ, re-

spectively. Then for every pixel 𝑃[𝑖, 𝑗] determined by coordinates 𝑖 and 𝑗, the membership function value of the fuzzy 

spatial relation AtCenter (“at centre of the image”) is calculated as: 

 

𝜇𝐴𝑡𝐶𝑒𝑛𝑡𝑒𝑟,𝑑,𝑔(𝑃[𝑖, 𝑗]) = {

1,                                     𝑖𝑓 𝑖2 + 𝑗2 ≤ 𝑑2

1 − (𝑙 − 𝑑) 𝑔,      𝑖𝑓 𝑑2 < 𝑖2 + 𝑗2 ≤ (𝑑 + 𝑔)2⁄

   0,                           𝑖𝑓 𝑖2 + 𝑗2 ≥ (𝑑 + 𝑔)2,

 

 

where 𝑙 is distance of pixel 𝑃[𝑖, 𝑗] from the center of the image, 𝑑 is a constant which defines the core of this fuzzy set, and 

𝑔 is a constant that defines the fuzziness of this fuzzy set. 

Definition 5. Let 𝑃 be a two-dimensional matrix that represents digital image, whose width and height are 𝑤 and ℎ, re-

spectively. Let 𝑝̃  be a linear fuzzy polygon in a linear fuzzy space. For the polygon 𝑝̃  that represents a reference object, we 

define two points: 𝑚𝑎𝑥𝑇𝑜𝑝̃ (polygon point with smallest 𝑗 coordinate), maxBottom (polygon point with largest 𝑗 coordi-

nate). If every pixel 𝑃[𝑖, 𝑗] is determined by coordinates 𝑖 and 𝑗, then the membership function value of the fuzzy spatial 

relation RightOf (“right of”) is calculated as: 

𝜇𝑅𝑖𝑔ℎ𝑡𝑂𝑓,𝑔(�̃�̃, 𝑃[𝑖, 𝑗]) =

{
 

 
1,                                            𝑗𝑚𝑎𝑥𝑇𝑜𝑝 ≤ 𝑗 ≤ 𝑗𝑚𝑎𝑥𝐵𝑜𝑡𝑡𝑜𝑚, 𝑖 > 𝑟𝑖𝑔ℎ𝑡(𝑗, 𝑝̃) 

1 −
𝑔 ∗ cos−1(𝜃)

𝜋
, 𝑗 < 𝑗𝑚𝑎𝑥𝑇𝑜𝑝 𝑜𝑟 𝑗 > 𝑗𝑚𝑎𝑥𝐵𝑜𝑡𝑡𝑜𝑚, 𝑖 > 𝑟𝑖𝑔ℎ𝑡(𝑗, �̃�̃)

0,                                                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where function 𝑟𝑖𝑔ℎ𝑡(𝑖, 𝑝̃ ) returns maximal value of 𝑖 coordinate from points of polygon 𝑝̃  whose 𝑗 coordinates are equal 

to 𝑗 coordinate of pixel 𝑃[𝑖, 𝑗]. Value 𝜃 represents an angle which 𝑃[𝑖, 𝑗] forms with point maxTop (if 𝑗 <  𝑗𝑚𝑎𝑥𝑇𝑜𝑝̃), or 

point maxBottom (if 𝑗 >  𝑗𝑚𝑎𝑥𝐵𝑜𝑡𝑡𝑜𝑚), and constant 𝑔 represents fuzziness of this fuzzy set. 

Definition 6. Let 𝑃 be a two-dimensional matrix that represents digital image, whose width and height are 𝑤 and ℎ, re-

spectively. Let 𝑝̃  be a linear fuzzy polygon in a linear fuzzy space. For the polygon 𝑝̃  that represents reference object, we 

define two points: maxLeft (polygon point with smallest 𝑖 coordinate), maxRight (polygon point with largest 𝑖 coordinate). 

If every pixel 𝑃[𝑖, 𝑗] is determined by coordinates 𝑖 and 𝑗, then the membership function value of the fuzzy spatial relation 

Above (“above”) is calculated as: 

𝜇𝐴𝑏𝑜𝑣𝑒,𝑔(�̃�̃, 𝑃[𝑖, 𝑗]) =

{
 

 
1,                                            𝑖𝑚𝑎𝑥𝐿𝑒𝑓𝑡 ≤ 𝑖 ≤ 𝑗𝑚𝑎𝑥𝑅𝑖𝑔ℎ𝑡, 𝑗 < 𝑎𝑏𝑜𝑣𝑒(𝑖, �̃�̃) 

1 −
𝑔 ∗ cos−1(𝜃)

𝜋
, 𝑖 < 𝑖𝑚𝑎𝑥𝐿𝑒𝑓𝑡 𝑜𝑟 𝑖 > 𝑖𝑚𝑎𝑥𝑅𝑖𝑔ℎ𝑡, 𝑗 > 𝑎𝑏𝑜𝑣𝑒(𝑖, �̃�̃)

0,                                                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where function 𝑎𝑏𝑜𝑣𝑒(𝑖, 𝑝̃ ) returns maximal value of j coordinate from points of polygon 𝑝̃  whose 𝑖 coordinates are equal 

to 𝑖 coordinate of pixel 𝑃[𝑖, 𝑗]. Value 𝜃 represents an angle which 𝑃[𝑖, 𝑗] forms with point maxLeft (if 𝑖 <  𝑖𝑚𝑎𝑥𝐿𝑒𝑓𝑡), or 

point maxRgiht (if 𝑖 >  𝑖𝑚𝑎𝑥𝑅𝑖𝑔ℎ𝑡), and constant 𝑔 represents fuzziness of this fuzzy set. 

Fuzzy spatial relations LeftOf and Below are defined analogously. 
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Definition 7. Let 𝑃 be a two-dimensional matrix that represents digital image, whose width and height are 𝑤 and ℎ, re-

spectively. Let 𝑝̃  be a linear fuzzy polygon in a linear fuzzy space. Then, for every pixel 𝑃[𝑖, 𝑗] determined by coordinates 

𝑖 and 𝑗, 𝑙 is a distance between 𝑃[𝑖, 𝑗] and reference object  𝑝̃ , and the membership function value of the fuzzy spatial 

relation (Very)CloseTo (“(very) close to”) is calculated as: 

𝜇𝐶𝑙𝑜𝑠𝑒𝑇𝑜,𝑑,𝑔(𝑝̃, 𝑃[𝑖, 𝑗]) =

{
 

 
1,                  𝑖𝑓 𝑙 ≤ 𝑑

1 −
𝑙 − 𝑑

𝑔
,       𝑖𝑓 𝑑 < 𝑙 ≤ 𝑑 + 𝑔

0,          𝑖𝑓 𝑙 > 𝑑 + 𝑔,

 

 

where 𝑑 is a constant that defines the core of fuzzy set, and 𝑔 is a constant that defines fuzziness of this fuzzy set. Values 

of 𝑑 and 𝑔 for relation VeryCloseTo should be smaller than those for relation CloseTo. 

Definition 8. Let 𝑃 be a two-dimensional matrix that represents digital image, whose width and height are 𝑤 and ℎ, re-

spectively. Let 𝑝̃  be a linear fuzzy polygon in a linear fuzzy space. Then, for every pixel 𝑃[𝑖, 𝑗] determined by coordinates 

𝑖 and 𝑗, 𝑙 is a distance between 𝑃[𝑖, 𝑗] and reference object  𝑝̃ , and membership function value of fuzzy spatial relation 

(Very)FarFrom (“(very) far from”) is calculated as: 

𝜇𝐹𝑎𝑟𝐹𝑟𝑜𝑚,𝑑,𝑔(𝑝̃, 𝑃[𝑖, 𝑗]]) =

{
 

 
1,                  𝑖𝑓 𝑙 > 𝑑

𝑙 − (𝑑 − 𝑔)

𝑔
,       𝑖𝑓 𝑑 − 𝑔 < 𝑙 ≤ 𝑑

0,          𝑖𝑓 𝑙 < 𝑑 − 𝑔,

 

 

where 𝑑  is a constant that defines the core of fuzzy set, and 𝑔 is a constant that defines fuzziness of this fuzzy set. Value 

of 𝑑 for relation VeryFarFrom should be bigger than for relation FarFrom. 

Definition 9. Let 𝑃 be a two-dimensional matrix that represents digital image, whose width and height are 𝑤 and ℎ, re-

spectively. Let 𝑝̃  be a linear fuzzy polygon in a linear fuzzy space. Then, for every pixel 𝑃[𝑖, 𝑗] determined by coordinates 

𝑖 and 𝑗, 𝑙 is a distance between 𝑃[𝑖, 𝑗] and reference object  𝑝̃ , and membership function value of fuzzy spatial relation 

AtDistanceOf(“at distance of”) is calculated as: 

𝜇𝐴𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑂𝑓,𝑑,𝑔(𝑝̃, 𝑃[𝑖, 𝑗], 𝑟) =

{
  
 

  
 

1,                  𝑖𝑓 𝑟 − 𝑑 < 𝑙 ≤ 𝑟 + 𝑑

1 −
𝑙 − (𝑟 + 𝑑)

𝑔
,       𝑖𝑓 𝑟 + 𝑑 < 𝑙 ≤ 𝑟 + 𝑑 + 𝑔

𝑙 − (𝑟 − 𝑑 − 𝑔)

𝑔
,          𝑖𝑓 𝑟 − 𝑑 − 𝑔 < 𝑙 ≤ 𝑟 − 𝑑

0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where 𝑟 is parameter of the relation and represents desired distance from the reference object. Constant 𝑑 defines the core 

of fuzzy set (allowed deviation from desired distance), a constant 𝑔 defines the fuzziness of fuzzy set. 

Previously defined elementary fuzzy spatial relations can be combined with use of operators AND, OR, NOT, and 

SUBTRACT, thus obtaining more complex fuzzy spatial relations. Following are the definitions of these operators. 

Definition 10. Let 𝐹 and 𝐺 be two elementary fuzzy spatial relations. Then 𝐴𝑁𝐷 (conjunction) is a binary operator that 

composes relations 𝐹 and 𝐺 in such way that value of membership function for each pixel 𝑃[𝑖, 𝑗] is calculated as minimum 

of membership function values of 𝐹 and 𝐺 for pixel 𝑃[𝑖, 𝑗]: 

𝐴𝑁𝐷(𝜇𝐹(𝑃[𝑖, 𝑗]), 𝜇𝐺(𝑃[𝑖, 𝑗])) = 𝑚𝑖𝑛(𝜇𝐹(𝑃[𝑖, 𝑗]), 𝜇𝐺(𝑃[𝑖, 𝑗])). 

Definition 11. Let 𝐹 and 𝐺 be two elementary fuzzy spatial relations. Then 𝑂𝑅 (disjunction) is a binary operator that 

composes relations 𝐹 and 𝐺 in such way that value of membership function for each pixel 𝑃[𝑖, 𝑗] is calculated as maximum 

of membership function values of 𝐹 and 𝐺 for pixel 𝑃[𝑖, 𝑗]: 

𝑂𝑅(𝜇𝐹(𝑃[𝑖, 𝑗]), 𝜇𝐺(𝑃[𝑖, 𝑗])) = 𝑚𝑎𝑥(𝜇𝐹(𝑃[𝑖, 𝑗]), 𝜇𝐺(𝑃[𝑖, 𝑗])). 

Definition 12. Let 𝐹 be an elementary fuzzy spatial relation. Then 𝑁𝑂𝑇 (complement) is a unary operator that behaves in 

such way that value of membership function for each pixel 𝑃[𝑖, 𝑗] is calculated as complementary of membership function 

value of 𝐹 for pixel 𝑃[𝑖, 𝑗]: 

𝑁𝑂𝑇(𝜇𝐹(𝑃[𝑖, 𝑗])) = 1 − 𝜇𝐹(𝑃[𝑖, 𝑗]) 
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Definition 13. Let 𝐹 and 𝐺 be two elementary fuzzy spatial relations. Then 𝑆𝑈𝐵𝑇𝑅𝐴𝐶𝑇 (subtraction) is a binary operator 

that composes relations 𝐹 and 𝐺 in such way that value of membership function for each pixel 𝑃[𝑖, 𝑗] is calculated as 

minimum of membership function value of 𝐹 and complementary membership function value of 𝐺 for pixel 𝑃[𝑖, 𝑗]: 

𝑆𝑈𝐵𝑇𝑅𝐴𝐶𝑇(𝜇𝐹(𝑃[𝑖, 𝑗]), 𝜇𝐺(𝑃[𝑖, 𝑗])) = 𝑚𝑖𝑛(𝜇𝐹(𝑃[𝑖, 𝑗]), 1 − 𝜇𝐺(𝑃[𝑖, 𝑗])). 

3. Specification of the software tool  

Complex fuzzy temporal and spatial experiment modeling depends on software tool and data models which allows scien-

tists to define, edit and remove large number of spatial samples. GIS tools are specialized for this kind of tasks but they are 

not adjusted to specific experiment driven modeling and it is hard to be included as integral part of Integrated Research 

Environment IRE.  

3.1 Functional design 

We are planning to build IRE as web-oriented platform where users can access through web browser so we are focused to 

web-based GIS libraries.  There are several open source Javascript libraries for mobile-friendly interactive maps like: 

Leaflet and OpenLayers.  

OpenLayers supports following formats: GeoRSS, KML (Keyhole Markup Language), GML (Geography Markup Lan-

guage), GeoJSON and map data from any source using OGC-standards as WebMapService or WebFeatureService while 

Leaflet supports only basic formats like KML, GML and GeoJSON.  

Figure 2. shows the main Use Case diagram with list of main software tool functions.  

 

Figure 2. Functional design 

Base map selection allow user to choose underlaying map. On top of base map all spatial data are organized in following 

hierarchy: project, layer and objects. Project contains more layers. All objects in one layer share at least one common 
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characteristic (for example, same date or same sensor or same country). Objects are defined according to ontology described 

in 2. They are represented by semantically connected set of basic fuzzy geometry models described in [5]. 

Data can be imported or exported in several different standard formats: GeoJSON, KML, GML or FuzzyGeoJSON. 

Main parts of this software are tools for fuzzy models and fuzzy relations manipulation. Those tools are implemented by 

OpenLayer extension to support fuzzy spatial models and fuzzy relations. 

3.2. Software architecture 

Architecture used in this specification allows multiple clients share the same data which is stored in relational or NoSQL 

data storage. Server host manage all client requests divided into two main groups: functional and security. Functional part 

is implemented in Microservice architecture as collection of weakly coupled or completely independent components. Both 

Client and Server are designed in multitier software design pattern with separated model, view and controller layers. DB 

Servers are hidden inside private network. 

 

Figure 3. Client server architecture 

3.3. Server 

Server is implemented as the collection of the REST services. Those services enable bidirectional communication be-

tween client components and database. Along with basic CRUD operations on spatial and temporal data it allows fuzzy 

extensions of discrete geometry object definitions. 

 
Figure 4. Server’s packages and modules 

Server consists of four main packages: data models, controllers, services and security (Figure 4.).  
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3.4. Client 

Client components (Figure 5.) are designed as set/collection of web plugins or independent components which allow end 

user to manipulate different map views, define, update and delete geometry and fuzzy spatial complex models.  

 

Figure 5. Client packages and modules 

 

Design pattern used in client specification is multi-tier with three main layers: model – view – controller. Component 

part contains both html view and javascript controller. Service package contains all modules which will implement com-

munication with server side. 

4. Conclusion 

 

This report presents a specification of the software tool for managing complex planar fuzzy spatial models and mathe-

matical model of the fuzzy spatial relations.  

Specification is presented using UML language with main use-case diagram, architecture design, server and client packages 

and modules.  

Software tool for managing complex planar fuzzy spatial models mainly will be used for training set preparation but it will 

be used for result visualization and all other use-cases where uncertainty and imprecision in spatial data is present. 

The proposed specification and models of fuzzy spatial relations are intended for GIS (imprecise spatial object modeling), 

but also apply to various other domains such as image analysis (imprecise feature extraction), robotics (environment mod-

els), etc. 
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