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Summary

This report presents the class model of the complex fuzzy spatial object. Atlas Platform class model of the
complex spatial object relies upon two basic models:

e Linear fuzzy space proposed in [1], and
» Formal object model of the geographic data proposed in [2].

Linear fuzzy space mathematical models provide for basic planar imprecise geometric objects (fuzzy line, fuzzy
polygon, fuzzy triangle, fuzzy circle), as well as the basic measurement functions (distance between fuzzy sets
representing basic planar imprecise object), fuzzy spatial operations (fuzzy union, fuzzy intersection and convex
fuzzy hull), and fuzzy spatial relations (coincidence, between and collinear). Then, the class model of the com-
plex fuzzy spatial object is obtained by applying linear fuzzy space mathematical models to a formal object
model of geographic data.

Keywords

Fuzzy point, linear fuzzy space, fuzzy line, fuzzy triangle, fuzzy collinear, spatial object, Fuzzy Spatial Region,
Fuzzy Spatial Field, Fuzzy Spatial Object, and Fuzzy Spatial Object Map



1. Introduction

Modelling imprecision and vagueness in spatially determined systems is an issue that attracts wide attention of
numerous researchers in diverse application domains. Environmental science is not an exemption to that rule.
On the contrary, the data in this field are often imprecise (geographical location, time, observed/measured
values, etc). On the other hand, a huge demand for modelling complex spatial objects in environmental sciences
calls for appropriate models that include uncertainty, imprecision, and vagueness.

In this report we present a class model of the complex planar imprecise object in ATLAS platform.

The rest of this report consists of four sections. Following this introduction is a section two that presents funda-
mentals of the simple spatial objects modelling. Then, the section three presents formal object model of the
geographic data proposed in [2]. Section four presents the proposed model of the complex planar imprecise
object in ATLAS platform. Section five is a conclusion that discusses advantages and disadvantages of the
proposed model.

2.1. Simple object modelling

2.1.1.Fuzzy point, linear fuzzy space, fuzzy relation

Definition 2.1.1 Fuzzy point P € R?, denoted by P is defined by its membership function us € F2, where the
set F2 contains all membership functions u: R? - [0,1] satisfying following conditions:

i) (VueFH@EPeR)HulP) =1,

i) (VXy, X, € R®)(A € [0,1]) u(AX; + (1 — DX;) = min( u(Xy), u(Xy)),
iii) function u is upper semi continuous,

iv) [u]® = {X|X € R%u(X) = a} a-cut of function u is convex.

The point from R?, with membership function us(P) = 1, will be denoted by P (P is the core of the fuzzy point
P), and the membership function of the point P will be denoted by us. By [P]* we denote the a-cut of the
fuzzy point (this is a set from R?).

Definition 2.1.2 R? Linear fuzzy space is the set 72 < F?2 of all functions which, in addition to the properties
given in Definition 2.1, are:

i) Symmetric against the core S € R?
w($) =1),
(V) =uM) A p(M) #0 = d(S,V) =d(S, M),
where d (S, M) is the distance in R?,
ii) Inverse-linear decreasing w.r.t. points’ distance from the core according to:
Ifr+0

N _dsy)
us(V) = max (0, 1 el )
ifr=0
1 if S=V
“S”(V)‘{ 0 if S#V,
where d(S,V) is the distance between the point V and the core S (V,S € R™) and r € R is constant.
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Elements of that space are represented as ordered pairs S = (S,75) where S € R? is the core of S, and 75 € R
is the distance from the core for which the function value becomes 0; in the sequel parameter rg will be denoted
as fuzzy support radius.

Definition 2.1.3 Let the linear fuzzy space  be defined on R. Fuzzy relations <®¥ and <. for the set A are
defined by membership functions
0 if A>B,

w(A <RF B) = Tj:fB if ASBANA+1,>B+rp
1 if ASBAA+1,<B+rp,
0 if A>B
B—-A

‘LL(ASLFE): LfASB/\A—TA>B—T‘B

g — T4
1 if ASKBANA—-1,<B-—rjp,
respectively, where A = (4,7,) and B = (B, 13) are points from H, A is the core of A and r, is a parameter
determining the membership function of point A.

2.1.2.Basic fuzzy plane geometry objects in R? linear fuzzy space

In this section we present theoretical models of basic operations over linear fuzzy space H 2 defined on R?, as
well as their properties which will be used in definitions of basic fuzzy plane geometry objects.

Definition 2.2.1 Let A, B € 2. An operator +: H?2 x H? — H2 is called fuzzy points addition given by
A+B=(A+B,1ry+1p),
where A + B is a vector addition, and r,4 + rp is a scalar addition.

Definition 2.2.2 Let 72 be a linear fuzzy space. Then a function f: 7?2 x 72 x [0,1] —» #? is called linear
combination of the fuzzy points 4, B € #?2 given by

f(4,Bu)=A+u-(B-A4),
where u € [0,1] and operator - is a scalar multiplication of fuzzy point.

Definition 2.2.3 Let 4, B € #£? and A # B. Then a point T,z € R? is called internal homothetic center if the
following holds

"~ (B — 4),

ar+by

TAB=A+

where A = (4,a,) and B = (B, b,.).

Fuzzy points are used to describe the position of a real object when there is some uncertainty to the measured
position. Most often this uncertainty in practical applications is ignored. There are applications in which real
objects are not only represented by the position but the entire series of uniformly spaced points. These points
can be distributed along a curve that has a beginning and an end. Curve that connects two points is called a line
or path.

If the points that represent the path are imprecise, then the whole line should be described in way similar to
imprecise point’s description. The mathematical model of such fuzzy line follows.

Definition 2.2.4 Let 72 be a linear fuzzy space and function £ is a linear combination of the fuzzy points A
and B. Then a fuzzy set AB is called fuzzy line if following holds



AB = UuE[O,l]f(A:E'u)-

Theorem 2.2.1 Let 72 be linear fuzzy space, fuzzy line AB defined by fuzzy points A and B € 2. Then
following holds

AB = BA.

Definition 2.2.5 Let AB be fuzzy line defined on linear fuzzy space %2 and X € R?. Then a fuzzy point X’
AB is called fuzzy image of point X on fuzzy line AB, and a real number u € [0,1] is called eigenvalue of the
fuzzy image X on fuzzy line AB if following hold

() X' =A+u(B-4A),
(i) d(x,[¥]) = min (d@x, V)|vY € [4B]'},

0 (xl—al)(bl—a1)+(x2—a2)(b2—az)))
’ (b1—a1)?+(by—ay)? !

(iii) u = min (1, max(

where X = (x;,%;), A = ((a,a3),a,) i B = ((by, by), by).

Remark. If the eigenvalue of the fuzzy image X is equal 0, then fuzzy image is the starting fuzzy point, if
eigenvalue is equal 1 it is the final point, otherwise it is the inner point of a fuzzy line.

Theorem 2.2.2 Let AB € L2 be fuzzy line, X' € #2 fuzzy image of point X € R? on AB and u € [0,1] eigen-
value of the fuzzy image X on AB. Then point X belongs to fuzzy set AB according to following

pa(X) if up=0
nap(X) = pr,(X) if 0<u, <1
pus(X) if up=1
(br—ay) d(X'X’)Z

where fuzzy point X; = A + u,,,(B — A) and u,,, = u + T AGE)?

Definition 2.2.6 Let 4, B, C € H'? be fuzzy points with noncollinear cores (4 # B # C) and function f is a
linear combination of two fuzzy points. Then the fuzzy set ABC is called a fuzzy triangle if the following holds

1 1
ABC = Uf(A, Uf(E’, C,v),u)
u=0 v=0
The membership function of this set is denoted by uzz¢(X) and determined according to the following formula
Hape (X) = ue[o,rﬁgz)é[o,ﬂ{“ﬂx)l V=f@r@C U)'u)} '
a-cut of fuzzy triangle ABC is denoted by [4BC]”.

Definition 2.2.7 Let ABC be a fuzzy triangle defined on fuzzy linear space 2. Fuzzy point X c ABC is called
edge point of the fuzzy triangle ABC if for all « € [0,1] a point Y € [X]* exists such that all its neighborhoods

contain at least one point from [ABC|” and at least one point outside of [ABC]”.

Remark. a-cut of all edge points intersect a-cut of fuzzy triangle in at least one point.
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Definition 2.2.8 Let ABC be a fuzzy triangle defined on fuzzy linear space H 2. Fuzzy point X ¢ ABC is called
inner point of fuzzy triangle ABC if it is not an edge point.

Definition 2.2.9 Let ABC be a fuzzy triangle defined on fuzzy linear space #2. Union of all edge points of the
fuzzy triangle ABC is called fuzzy edge of fuzzy triangle ABC , denoted by 9ABC.

Theorem 2.2.3 Let ABC be a fuzzy triangle defined on #?2. Then, for every fuzzy point X €
0ABC/{A,B,C} and a € [0,1] the single point T € [X]% exists such that all its neighborhoods contain at least

one point from [ABC]” and at least one point outside of [ABC|".

Theorem 2.2.4 Let ABC be a fuzzy triangle defined on linear fuzzy space 2. Then for all X € R? the following
holds

tzse (X) = pezs(X) = pugea (X).

Direct consequence of this proposition is that a fuzzy triangle can be represented by three fuzzy points, i.e., the
set {4,B,C}.

Fuzzy circle is also one of the basic planar imprecise geometrical objects. Analogously to the definitions of
fuzzy line and fuzzy triangle, which is an extension of a precise circle, we define a fuzzy circle as a union of

fuzzy points. Thereby, we also take care that a newly defined geometrical object is appropriate for implemen-
tation in GIS applications.

Definition 2.2.10 Let  be a fuzzy space defined on R, fuzzy relation <RF be fuzzy ordering in linear fuzzy
space 7, C € R? and R € H. Then the union of all fuzzy points A € 2 such that
u(d(c,A) <RFR) =1,

is called fuzzy circle with center € and radius R.
Fuzzy circle is represented by the ordered pair (C, R).

Theorem 2.2.5 Let (C, ﬁ) be a fuzzy circle defined on linear fuzzy space 2. Then the value of the fuzzy circle
membership function in point X € R? is determined according to the following formula

. d(X,C)-R
K, py(X) = max (O, min (1, 1-— ¥))

Tr

where R = (R,7;).

Definition 2.2.11. Let £? be a linear fuzzy space and A = {4,..4,} be the ordered set of the fuzzy points
A, € H?. Then linear fuzzy path s(A) is given by

n-1

S(ﬂ) = U AAq
i=1

If X € R?, then the membership function sy Of the linear fuzzy path s(A) is given by
s (X) = max pyz, (X).

Definition 2.2.12 Let H'?2 be a linear fuzzy space and A = {A4;,..4,} be the ordered set of the fuzzy points
A, € H?.Then closed linear fuzzy path c(A) is given by



(D) = s(D| ) aA,

If X € R?, then the membership function .4 of the closed linear fuzzy path c(A) is given by
He(ay(X) = max{ps.z)(X), naz, (XD}

Definition 2.2.13 Let H'2 be a linear fuzzy space and A = {4;,..4,,} be the ordered set of the fuzzy points 4, € 2. Then,
a linear fuzzy polygon p(A) is given by

1 if X inside polygon c(A)°

My (X) = {,ug(ﬁ) (X) otherwise,

where c(A)° is the core of the fuzzy set c(A).

2.1.3.Spatial measurement in R? linear fuzzy space

Measurement of the space, especially a distance between plane geometry objects is defined as a generalization
of the concept of physical distance. Distance function or metric is a function that behaves according to specific
set of rules. In this section we present the basic distance functions between fuzzy plane geometry objects and
their main properties according to the set of rules presented in papers [1], [20]

Definition 2.3.1 Let 2 be a linear fuzzy space, d: H? x H? - H*, L,R:[0,1] x [0,1] - [0,1] be symmet-
ric, associative and non-decreasing for both arguments, and L(0,0) = 0, R(1,1) = 1. The ordered quadruple

(H?,d,L,R) is called fuzzy metric space and the function d is a fuzzy metric, if and only if the following
conditions hold:

(i) d(X,7)=0 o [X]'=[7]"
(ii) d(X,Y) =d(7,X) foreach X,V € 12
(iii) vX,Y € 72
a. d(X,V)(s+0)=L(dx 2)(s),d(zy)®) if
sSAH2DAN t< (YA s+t< 4i(xy)
b. d(X,7)(s+¢t) <R(d(x,2)(s),d(zy)(®) if
s=2Mx 2N t=24EZY)AN s+t = A(xy),

where the a-cut of fuzzy number d(x, y) is given by [d(X, 7)]*

=[x, ), pa(x, ¥)] (x,y ER*, 0 < a <
1). The fuzzy zero, 0 is a non-negative fuzzy number with [0]* = 0.

Remark: Following distance functions are fuzzy metrics.

(i) C?()g, Yj) =pr (dX,Y), (rx +1v))
(ii) cg(x, Y) =pr (d(X,Y), max(ry, 1))
(i)  d(X.Y)=pr [dX,Y), Irx —1v])
Distance (iii) also satisfies set of rulles which define clasic metric.

In the following definitions we extend distance between fuzzy points to distance between different fuzzy plane
geometric objects, such as distance between fuzzy point and fuzzy line, fuzzy point and fuzzy triangle and at
last between two fuzzy triangles.
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Definition 2.3.2 Let H'2 be a linear fuzzy space, £? set of all fuzzy linesdefined on #2, d is fuzzy distance
between fuzzy points, and y; is membership function of the fuzzy relation minimal (Definition 15. in the paper
[1]). The function dist: H? x L2 —» H ™ is called distance between fuzzy point and fuzzy line if the following
holds:

dist(T,AB) = d(T, X)
where £ € 4B suchthat , (d(T, %)) = hgt({d(T,7)|v¥ € 4B}).

Definition 2.3.3 Let 2 be linear fuzzy space, 72 be a set of all fuzzy triangles defined on 2, d is fuzzy

distance between fuzzy points and p, is membership function of the fuzzy relation minimal. The function

dist: % x T? - H* is called distance between fuzzy point and fuzzy triangle if the following holds:
dist(T,ABC) = d(T,X)

where X € ABC such that y, (d(7, X)) = hgt({d(T,7)|v¥ € ABC})

Definition 2.3.4 Let 72 be linear fuzzy space, £ set of all fuzzy lines on %2 d is fuzzy distance between
fuzzy points and u, is membership function of the fuzzy relation minimal. Th function dist: £L? X £L? - H*
is called distance between two fuzzy lines if the following holds:
dist(AB,CD) = d(X,Y)
where X € AB and ¥ € CD such that
u, (d(X,7)) = hgt({d(Q, W)|vQ € AB A¥W € CD})

Definition 2.3.5 Let £2 be a linear fuzzy space, £2 be a set of all fuzzy lines on 22, T2 be a set of all fuzzy
triangles, d is fuzzy distance between fuzzy points and g, is membership function of the fuzzy relation mini-
mal. The function dist: £L? x T2 — 3t is called distance between fuzzy line and fuzzy triangle if the follow-
ing holds:

dist(AB,CDE) = d(X, V)

where X € AB and Y € CDE satisfies condition
u, (d(X,7)) = hgt({d(0, W)|vQ € AB A¥W € CDE}))

Definition 2.3.6 Let 72 be linear fuzzy space, T2 be a set of all fuzzy triangles on H'?2, d is fuzzy distance
between fuzzy points and u; is membership function of the fuzzy relation minimal. The function
dist:T? x T2 - H* is called distance between two fuzzy triangles if the following holds:

dist(ABC,DEF) = d(X,Y)

where fuzzy points X € ABC and Y € DEF such that
u, (d(X,7)) = hgt({d(Q,W)|vQ € ABC AW € DEF)).
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2.1.4.Spatial relations in R? linear fuzzy space

Spatial relations (predicates) are functions that are used to establish mutual relations between the fuzzy geomet-
ric objects. The basic spatial relations are coincide, between and collinear. In this section we give their defini-
tions and basic properties.

Fuzzy relation coincidence expresses the degree of truth that two fuzzy points are on the same place.

Definition 2.4.1 Let A be the Lebesgue measure on the set [0,1] and 7£2 is a linear fuzzy space. The fuzzy
relation coin: H? x H?2 — [0,1] is fuzzy coincidence represented by the following membership function

teoin(4,B) = 2({a | [A]* n [B]* = o).
Remark. Since the lowest a is always 0, then a membership function of the fuzzy coincidence is given by
teoin(4, B) = max{a | [A]a N [B]* # ).

Proposition
“Fuzzy point A is coincident to fuzzy point B”

is partially true with the truth degree t.oin (/T, E’); in the Theorem 4.1 we present method for its calculation.

Theorem 2.4.1 Let the fuzzy relation coin be a fuzzy coincidence. Then the membership function of the fuzzy
relation fuzzy coincidence is determined according to the following formula

(o if |a.|+ b =0 Ad(4,B) %0,
(4, B) = { max 0,1--—2AB) N e 0
#COln ) - ) |arl+|br| T T )
1 if la|+ b =0 Ad(AB)=0.

Fuzzy relation contains or between is a measure that fuzzy point belongs to fuzzy line or fuzzy line contains
fuzzy point.

Definition 2.4.2 Let A be Lebesgue measure on the set [0,1], 22 linear fuzzy space and £2 be set of all fuzzy
lines defined on #£2. Then fuzzy relation contain: 7?2 x L2 — [0,1] is fuzzy contain represented by following
membership function

.ucontain(A';Bﬁé) = A({a’ | [A]a n [BVC]a +* @})
Remark. Its membership function could be also represented as

Heontain(4, BC) = A({a|Fu € [0,1] A3X € [A]“ A3Y,Z € [BC] A X =Y +u(Z - V)}).

Proposition

“Fuzzy line BC contain fuzzy point A”

is partially true with the truth degree ucontain (/T, EE) ; in the Theorem 4.2 we present method for its efficient
calculation.

Theorem 2.4.2 Let 4, B, C € 2 be fuzzy points defined on #? linear fuzzy space, u € [0,1] and 4" be fuzzy
image of point A on fuzzy line BC. Points T,z and T, are internal homothetic centre fuzzy points for fuzzy
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points A and B and A and C respectively. Then the membership function of the fuzzy relation fuzzy contain is
determined according to the following formula

teoin(A, A7) ako je u € {0,1}

- (4,BC) =
Heontain( ) { uz(A9)ako jeu € (0,1)

where point A* is a projection of core of A on the line passing through the points T,z and T

Collinearity is also one of the fundamental relations between three points in plane geometry. In the following
definition we will present our definition of fuzzy collinearity in fuzzy linear space, as well as the method for its
practical computation.

Definition 2.4.3 Let 4,B,C € #? be a fuzzy points defined on #? linear fuzzy space and A be Lebesgue
measure on the set [0,1]. The fuzzy relation coli: H? x H? x H? - [0,1] is fuzzy collinearity between three
fuzzy points and it is represented by following membership function

teo(4,B,€) = Maldue RAax e [A]“ A3y e [B]*A 3Z € [C]°A A=B+u(C-B)}.

Proposition
"Fuzzy points 4, B and € are collinear"

is partially true with the truth degree Mcoli(Ar B, C); in the Theorem 4.3 we present method for its calculation.

Theorem 2.4.3 Let 4, B, C € 32, fuzzy relation contain be fuzzy contain. Then a membership function of the
fuzzy relation fuzzy colinearity is determined according to the following formula

Heoli (A: E' 6) = max (ﬂcontain (A: BA-C): Ucontain (E» ZZ‘)» Ucontain (C~: ZB)) .

3. Formal object model of the geographic data

In this section we present the formal object model of the geographic data [2] which is the basis for our model
of complex fuzzy objects presented in section 4.

Definition 3.1. An object o can be constructed out of other objects o1, ...0n, in Which case o is called complex
and o4, ...0n are called the components of o. If an object is not complex, then it is called simple. Classes can be
structured into hierarchies; the ancestors of a class C in the hierarchy are called the superclasses of C. Classes
are divided into conventional classes and geographical classes (or geo-classes). The geo-classes model geo-
graphical fields and objects, whereas the conventional classes correspond to classes whose instances are non-
spatial objects. Each geographical class of objects has both locational and conventional attributes.

Definition 3.2. The conventional attributes are assumed to be derived from a universe U of descriptive attributes
{A4,...,A,}, defined on domains D(4,),...,D(4,).

3.1. Basic model hierarchy

The basic model hierarchy recognizes following classes: Graphical Region, Graphical Field, Geo-Object, and
Geo-Object Map.

Definition 3.1.1 A set of points R which is a subset of %2 is called a geographical region.
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Definition 3.1.2 Let R be a geographical region. A geo-field f is an object [ay,...a,, 1], where a; € D(Ai)
and A: R — V defines a mapping between points in R and values on a domain V.

In this model, the geographical fields can be specialized. Depending on the range of the variable, the following
subclasses of GEO-FIELD are defined:

e THEMATICAL - an instance of this class, called a thematical geo-field, defines a mapping A:R —» V
such that V is a finite denumerable set. The elements of IV are called geo-classes and, intuitively,
define the themes of a thematical map.

e NUMERICAL - an instance of this class, called a digital terrain model or simply a DTM, defines a map-
ping A: R — V such that IV is the set of real values.

e REMOTESENSINGDATA - a specialization of the NUMERICAL class, whose instances have a range V
which is a set of discrete values obtained by quantization of the response of the earth’s surface to
incident radiation, obtained by an active or passive sensor. This class is particularly useful to integrate
remote sensing images into a GIS.

Geo-fields can be represented in a GIS in various formats; digital terrain models can be represented by regular
grids or triangular grids, thematic maps can be represented by a topologically-structured set of vectors or by a
symbolic array (raster representation), and images are usually represented by an array of values (raster repre-
sentation).

Definition 3.1.3 Given a set of geographical regions R;,...R,, a geo-object go is an object
[aq,...a,, geoq, ..., geoy,], composed by the values a; € D(Ai) and by a set of geographical locations geo;
(where geoi S R;). We shall indicate the i-th attribute of go by go. A; and the i-th geographical location of
go by go.R;.

Geo-objects represent individualizable entities of the geographic domain. They are phenomena that may have
one or more graphical representations, which correspond to the geo-referenced set of coordinates that describe
the object’s location. In simple words, an object is a unique element that can be represented in one or more
points in space, and which has various descriptive attributes. This definition allows for multiple geometrical
representations to be assigned to the same geo-object.

Definition 3.1.4 Let R be a geographical region. A geo-object map mo is an object [R, GO, geo] such that GO
is a set of geo-objects and geo is a mapping GO — R, which assigns, for each geo-object go € GO, a location

geo(go) inR.

In a GIS, each geographical object is associated to one or more geographical locations. Since most applications
do not deal with isolated elements in space, it is convenient to store the graphical representation of geo-objects
together with its neighbors. These features lead to introduction of the concept of geo-object maps, which group
together geo-objects for a given cartographic projection and geographical region.

3.2. Operations on geographical data

The very same model suggests three main types of geographical algebras, defining operations on geographical
data:

» Fields algebra: manipulation of fields.

» Geo-objects algebra: descriptive and spatial properties based selection and query of geo-objects.

» Combined operations: generation of geo-object maps from fields, and generation of fields from geo-
objects.
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3.2.1. Fields algebra
There are three basic types of fields’ operators in the model: point, neighborhood and zonal.

3.2.1.1.  Point operators

A point operator produces a new geo-field, whose value in each point p depends only on the values in p in the
input geo-fields. Point operations are specified as a mapping between the ranges of the input and output fields.
Formal definition follows.

Definition 3.2.1 Let R be a geographical region, V; , V5, ..V, ., sets which define possible ranges for geo-fields,
and F; (i = 1,..,n + 1) be the class of all geo-fields which have R as a location and V; as its range.

The point operation II: F; X F2 - F,,, induces a function p such that, for every geo-field f; € F; (i =
1,..,n):

fae1@) = o (i(P),.--, f/n(P)),¥Y p € R.where the spatial values of the output geo-field f,,,; € F, 41 are
defined by the mapping 1,,,1: M - V4.

Point operators include transformation operators, mathematical functions, boolean operations, comparison op-
erators and functions such as finding extremes and averages. The value of the output field at each location is a
function only of the input values at the corresponding location.

3.2.1.2.  Neighborhood operators

In this class of operators, the output field is computed based on the values of a continuously-varying surface in
the neighborhood of each location of the input field. What follows is the formal definition of the neighborhood
operations on geo-fields preceded by the definition of the concept neighborhood in geographical region.
Definition 3.2.2 Given a geographical region R, a set of P € R is said to be connected iff, for any two points
p1, P2 € P thereis a line connecting these two points which is entirely contained in R. A neighborhood in R is
amapping N:R — 2% suchthatVvVp € R, p € N(p) and N(p) are connected.

Definition 3.2.3 Let R be a geographical region and F,, and F; the sets of geo-fields which are defined over R
and whose range is V;,i = 0,1. Let N: R - 2% and v: 2"* - V,. The neighborhood operation ¥: F, - F,
induced by v is such that:

Vi € FL,Y(f) = fo e fo@ =v{h(x)|x € NP)}),Vp € R.

3.2.1.3.  Zonal operations

This is a special class of neighborhood operators, where one geo-field (usually a thematic map) is used as a
spatial restriction on the operators on another geo-field (usually a DTM).

Definition 3.2.4 The zonal operation Z on a numerical geo-field f;, defined by A;: R — V;, (where V; is the set
of reals), and a thematic geo-field f,, defined by A,: R — V,, (where V,, is a discrete set { v4,...v,} ), and a
local function v is such that:

Z(f1) = fnew | dnew @) = v (44 (x),x € L(p)) and the zonal region L(p) satisfies

Vp€ RAL(P)CSR Ap €L(p),suchthat f,(x) = v, |Vx € L(p) .

3.2.2. Geo-Objects Algebra

3.2.2.1.  Spatial Relationships

In the proposed model, geo-objects are represented as 2D geometries (points, lines and regions). As the opera-
tions of the Geo-objects algebra may involve spatial restrictions, the model defines spatial relationships divided
in following categories:

» topological relationships, such as “inside” and “adjacent to”, which are invariant to rotation, translation,
and scaling transformations.
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» directional relationships, such as “above” and “beside”.

» metrical relationships, derived from the distance operations.
In the proposed model, only topological and metrical relationships on R2 are considered, based on the following
definitions:

 Anarea A is a 2D set of points of dimension 2, whose interior A° is connected (with no holes) and
which has a connected frontier §A.

» Aline L is a set of connected points of dimension 1, whose frontier §L is the first and the last point or
an empty set in the case of a circular line (an “island™), and its interior L° is the set of the other points.

* Anpoint P is a set of dimension 0, whose interior L° is the point itself and whose frontier 5P is empty.

To analyze the topological relationships on R2, this model considers the dimension of the intersection between
the two sets, with a minimal set of five relationships (touch, in, cross, overlap and disjoint) which are
applicable to all cases. The formal definitions of these relationships are given below.
The touch relationship is applicable to area-area, line-area, line-line, point-area and point-line situations. A set
of points S; touches another set S, when they have points in common, but their interiors do not:

Sitouch S, © (51 NS, # O) A(SY N S) = Q)
The in relationship is applicable to area-area, line-area, point-area and point-line situations. A set of points is
in another when their intersection is the first set:
SiinS, e §;nS, = S1.
The cross relationship is applicable in the case of line-line and line-area situations.
A line L crosses an area A when their interiors meet and the intersection of the two sets is not the line itself; two
lines cross when their interiors have a nonempty intersection and this intersections is a set of points of dimension
0:
LcrossA & (L°Nn A° = @) A (L n A) # L).
Lycrossl, & (LYNnLy # ®) A (dim(L;nL,) = 0.
The overlap relationship is applicable to area-area, line-line and point-point situations.
Two point sets S; and S, overlap when their intersection is different from them, but forms a set of points of the
same dimension:
Sioverlap S, © (51N Sy # S1) A5 N Sy # S,) A(dim (57 nSY) = dim(SY)).

3.2.2.2.  Spatial operations

In order to define the spatial operations over geo-objects, it is necessary to establish the notion of a computable
spatial predicate.

Definition 3.2.5 Let R be a geographical region, and GO a set of geo-objects which have representations in R,
defined by an object map om = [R, GO, geo]. A computable spatial predicate x is a spatial restriction, defined
by a topological relationship (inside, touch, cross, overlap and disjoint) or a metrical relationship, which can be
computed over the representations geo(go;) of the geo-objects go; € GO.

3.2.2.3.  Spatial selection

Definition 3.2.6 Let R be a geographical region, GO a set of geo-objects and mo an object-map mo =
[R, GO, geo,] which contains the spatial location of the geo-objects go € GO in R.

The spatial selection operation ¢ : GO — GO, given a spatial predicate x which relates the geo-objects go €
GO to a geo-object go* which is represented in mo by a mapping geo,(go™):

9:(G0) = {go € GO |&(geo(go)) }.

The output of such operation is a subset of the original set, composed of all geo-objects that satisfy the geome-
trical predicate, as in the following example:

- “select all counties of Srbija which are adjacent to the Severna Backa municipalities (which contains the city
of Subotica)”.
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3.2.2.4.  Spatial Join

Definition 3.2.7 Let R be a geographical region, GO, and GO, two sets of geo-objects and mo, and mo, object-
maps mo; = [R, GO;, geo;] which contain, respectively, the spatial location of the geo-objects go, € GO, and
go, € GO, in R. Let x be a spatial predicate computable for every pair of geographical locations
((geo1(goq), geo,(goy)). The spatial join operation 8: GO; X GO, — GO; X GO, is such that:
0 (GO1,G0;) = {(go1, goz) € (G01,602) [ & ((geo1(go1), geoz(goz) ) }-

The spatial join is an operation where a comparison between two sets of geo-objects GO, and GO, takes place,
based on a spatial predicate which is computed over the representation of these sets. The name “spatial join” is
employed by analogy to the join operation in relational algebra. The result of the spatial join operation is a set
of object-pairs, which satisfy the spatial restriction. Examples are:

« “Find all villages located closer than 50 km to the main roads in VVojvodina”.

*  “Find all cities in the Province of Vojvodina which are located closer than 10 km from a water reser-

voir.”

In the first example, the answer is a set of pairs of geo-objects (village, road) and in the second a set of pairs
(cities, water reservoir).

3.2.3. Transformations between Geo-Fields and Geo-objects

Another set of operations for geographical data concerns the transformations that generate geo-fields from sets
of geo-objects (and vice-versa). These transformation operations are of special importance, as they are the link
between the two general classes of geographical data.

3.2.3.1.  Generation of Geo-Objects from Geo-Fields

As an example of one important instance of such operations, we shall present spatial interpolation.
Definition 3.2.8 Let R be a geographical region, V;,V,,..1;, sets which define possible ranges for geo-fields,
and F; (i = 1,..,n) be the class of all geo-fields which have R as a location and V; as its range. Let GO be a set
of geo-objects and mo be an object-map mo = [R, GO, geo] which assigns geographical locations in R to the
geo-objects in GO.
The spatial interpolation operation ®: F; X ...X FE, — GO is such that:

Vfi €F,.., fn €F,
(1, for--rfn) = GO & Vgo € GO,go = [Vq,...,Vpm Qs --» Ay, geo(go)], and
geo (go) = {p € RIfi(p) = vy N .Afu(p) = vn }.
This definition corresponds to the generation of an object map from the spatial intersection of a set of geo-fields.
This situation occurs, for example, in zoning applications, when an overlay of thematic maps is performed to
obtain homogeneous zones. When a cadastral map is created from an overlay of geo-fields, each resulting geo-
object inherits all descriptive attributes from the original geo-fields.
One example of interpolation is: Determine the homogeneous regions of VVojvodina as the intersection of the
vegetation, geomorphology, and soils maps.

3.2.3.2.  Generation of Geo-Fields from Geo-Objects

These operations take as input a set of geo-objects GO, represented in the geo-objects map mo and generate as
output a field f;, defined on amap M by amapping A: M — V. We shall consider two operations, that of distance
maps (buffer zones) and that of attribute reclassification.

Buffer zones operation

Definition 3.2.9. Let R be a geographical region, F a set of geo-fields defined over R whose range is +. Let GO
be a set of geoobjects, and mo an object-map mo = [R, GO, geo], which assigns geographical locations in R
to the geo-objects in GO.
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The buffer zones operation A: GO — G induced by mo is such that, given a distance metric dist computable in
mo and an object go € GO:

Ano(go) = f & Vp € R, f(p) = dist(p, geo(go)).
Attribute reclassification operation

Definition 3.2.10 Let R be a geographical region, GO be a set of geo-objects whose descriptive attributes are
contained in D(4;) X...x D(A,), and mo an object-map mo = [R, GO, geo], which assigns geographical
locations in R to the geo-objects in GO.

Let F a set of geo-fields defined over R whose range is D (4;), where 4; is the i —th descriptive attribute of GO.
The attribute reclassification operation Q: GO — F induced by mo is such that:

Qmo(GO) = fo & (Y go € GO, f, (geo(go)) = go.A;).
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4. Class model of the complex fuzzy spatial object

Atlas Platform class model of the complex spatial object relies upon two basic models:

» Linear fuzzy space model proposed in [1, 3],
* Formal object model of the geographic data proposed in [2].

The fundamental concept of the complex spatial object in our model is the composite object.

4.1. Composite object

An object o can be constructed out of other objects o4, ...0n, in Which case o is called composite and 04, ...0n
are called the components of o. If an object is not composite, then it is called simple.

In our model, classes can be structured into hierarchies; the ancestors of a class C in the hierarchy are called
the superclasses of C.

The real world is modelled as a collection of object-oriented classes, classified as conventional classes and
spatial classes (i.e., geo-classes). The spatial classes model spatial fields and objects, while the conventional
classes correspond to classes whose instances are non-spatial objects.

The same entity might be modelled as a part of spatial class or as part of a standard class, depending on the
situation.

Each spatial class of objects has both locational and conventional attributes.

The conventional attributes are assumed to be derived from a universe U of descriptive attributes {44, ..., 4,},
defined on domains D(4,),...,D(4,).

4.1.1. Basic model hierarchy

The basic model hierarchy recognizes following classes: Fuzzy Spatial Region, Fuzzy Spatial Field, Fuzzy
Spatial Object, and Fuzzy Spatial Object Map.

Fuzzy Spatial Region
Definition 4.1. Fuzzy polygon in R? linear fuzzy space is called a fuzzy spatial region.
Fuzzy Spatial Field

A fuzzy spatial field represents a continuous spatial variable over some fuzzy region of the space.

Definition 4.2. Let R be a fuzzy spatial region. A fuzzy spatial field f is an object [a,,...a,, 1], where a; €
D(Ai)and A1: R — V defines a fuzzy mapping between fuzzy points in R and fuzzy values on a domain V.
The fuzzy spatial fields can also be specialized. Depending on the range of the variable, the following sub-
classes of GEO-FIELD are defined analogously to the original object model of geographic data:

o NUMERICAL - an instance of this class defines a mapping A: R — V such that V is the set of fuzzy
real numbers.

o LINGUISTIC - an instance of this class defines a mapping A: R — V such that I is the set of lin-
guistic variables defined by corresponding fuzzy sets.

Fuzzy Spatial Object

Fuzzy spatial objects represent individualizable entities of some spatially determined domain. They are phe-
nomena that may have one or more graphical representations, which correspond to the (in the case of envi-
ronmental science most often geo-referenced) set of coordinates that describe the object’s location.
Definition 4.3. Given a set of fuzzy regions R, ... R,,, a fuzzy spatial object go is an object

[ai,...an, geos,..., geo,], composed by the values a; € D(Ai) and by a set of spatial locations geo; (where
geo; S R)).
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Fuzzy Object Maps

Definition 4.4. Let R be a fuzzy region. A fuzzy object map mo is an object [R, GO, geo] such that GO is a
set of fuzzy spatial objects and geo is a mapping GO — R, which assigns, for each fuzzy spatial object go €
GO, a fuzzy location geo(go) in R.

4.1.2. Operations on fuzzy spatial data
In our model we define two main types of spatial algebras, defining operations on spatial data:

» Fuzzy Fields algebra: operations aimed at manipulation of fuzzy fields.
» Fuzzy Spatial Objects algebra: operations aimed at querying spatial objects in terms of descriptive and
spatial properties.

4.1.2.1. Fuzzy Fields algebra
There are two basic types of fuzzy field operators in our model: point and neighbourhood.
Point operators

Based on input fuzzy spatial fields, this operator produces a new fuzzy spatial field with value in each point p
depending only on the values in p in the input spatial fields. Point operations are specified as a mapping be-
tween the ranges of the input and output fields. Formal definition follows.

Definition 4.5. Let R be a fuzzy spatial region, V; , V5, ..V, ., be the sets which define possible ranges for
fuzzy spatial fields, and F; (i = 1,..,n + 1) be the class of all fuzzy spatial fields which have R as a location
and V; as its range. The point operation IT: F; X F, = F, ., induces a function p such that, for every fuzzy
spatial field f; e F; (i = 1,..,n):

fre1@) = p (@), ..., fu(P)), VP € R

where the spatial values of the output fuzzy spatial field f,,,; € F,,+, are defined by the mapping 4,,,,: M —
Vi1

Neighbourhood operators

In this class of operators, the output fuzzy field is computed based on the values of a continuously-varying
surface in the neighbourhood of each location of the input fuzzy field. What follows is the formal definition of
the neighbourhood operations on fuzzy spatial fields preceded by the definition of the concept neighbourhood
in fuzzy spatial region.

Definition 4.6. Given a fuzzy region R, aset of P S R is said to be connected iff, for any two fuzzy points
p1, b2 € P there is a fuzzy line connecting these two points which is fuzzy-entirely contained in R. A neigh-
bourhood in R is a mapping N: R — 2%, suchthatVp € R, p € N(p) and N(p) are fuzzy connected.
Definition 4.7. Let R be a fuzzy region and F,, and F; the sets of fuzzy spatial fields which are defined over R
and whose range is V;,i = 0,1. Let N:R - 2R andv: 2"1 - V. The neighbourhood operation ¥: F; - F,
induced by v is such that:

Vii € F,¥(fi) = fo® folp) = v({li(x)|x € N(p},Vp € R.
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4.1.2.2. Fuzzy spatial objects algebra

Spatial Relationships

In the proposed model, fuzzy spatial objects are represented as 2D fuzzy geometries (points, lines and re-
gions). As the operations of the fuzzy spatial objects algebra may involve spatial restrictions, the model de-
fines spatial relationships divided in following categories:

» Fuzzy topological relationships, such as “fuzzy inside” and “fuzzy adjacent to”, which are invariant to
transformations fuzzy rotation, fuzzy translation, and fuzzy scaling transformations.

» Fuzzy directional relationships, such as “fuzzy above”, “fuzzy bellow”, “fuzzy left”, “fuzzy right”,
and “fuzzy beside”.

»  Fuzzy metrical relationships, derived from the fuzzy distance operations.

In our model, topological and metrical relationships on R? are considered, based on the following definitions:

» Afuzzy area A is one of the following: a fuzzy point, a fuzzy line, a fuzzy circle or a fuzzy polygon, in
linear fuzzy space.

» Afuzzy line L is a fuzzy line in linear fuzzy space.

» A fuzzy point P is a fuzzy point in linear fuzzy space.

So far, we propose a minimal set of two relationships (in and cross) which are applicable to all cases. The
formal definitions of these relationships are given below.
The in relationship is applicable to cases point-point, area-area, line-area, point-area and point-line situa-
tions. A fuzzy spatial object S; is in a fuzzy spatial object S, when following holds:

* point-point situation: Objects S; and S, satisfy spatial relation coincide in linear fuzzy space.

e point-line situation: Objects S; and S, satisfy spatial relation contain in linear fuzzy space.

» point-area situation: Fuzzy point S, is in fuzzy polygon S, if the core of the point S; is inside the
fuzzy polygon S, including the support of the fuzzy polygon S,.

» line-area situation: Fuzzy line S; is in fuzzy polygon S, if the start and end points of the line S; are
completely inside the fuzzy polygon S, including the support of the S,.

e area-area situation: Fuzzy polygon S; is in fuzzy polygon S, if the support of the fuzzy polygon S,
is completely inside the fuzzy polygon S, including the support of the S, .

The cross relationship is applicable in the case of line-line and line-area situations.
e Line-line situation: Line S; crosses a line S, if

0 Start and end points of the lines S; and S, do not satisfy relation colinear in linear fuzzy
space.
0 There is at least one point with a core in the fuzzy set S; and in the fuzzy set S,.

Spatial operations

To define the spatial operations over fuzzy spatial objects, we first define the notion of a computable fuzzy
spatial predicate.

Definition 4.8. Let R be a fuzzy region, and GO a set of fuzzy spatial objects which have representations in R,
defined by an object map om = [R, GO, geo]. A computable fuzzy spatial predicate x is a spatial restriction,
defined by a topological relationship (fuzzy inside, fuzzy cross) or a metrical relationship as defined in fuzzy
linear space, which can be computed over the representations geo(go;) of the fuzzy spatial objects go; €
GO.

Next, we define two fuzzy spatial operations: fuzzy spatial selection and fuzzy spatial join.
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Fuzzy spatial selection

Definition 4.9. Let R be a fuzzy region, GO a set of fuzzy spatial objects and mo an fuzzy spatial object map
mo = [R, GO, geo,] which contains the fuzzy spatial location of the spatial objects go € GO in R.

The fuzzy spatial selection operation ¢ : GO — GO, given a spatial predicate x which relates the fuzzy spatial
objects go € GO to a fuzzy spatial object go* which is represented in mo by a mapping geo,(go™*) is:
9e(G0) = {go € GO |¢(geo(go)) }.

The output of such operation is a fuzzy subset of the original fuzzy set, composed of all fuzzy spatial objects
that satisfy the geometrical predicate, as in the following example:

- “select all counties of Srbija which are to some extent adjacent to the Severna Backa municipalities (which
contains to some extent the city of Subotica)”.

Fuzzy spatial join
Definition 4.10. Let R be a fuzzy region, let GO, and GO, be two sets of fuzzy spatial objects, and let mo,
and mo, be fuzzy spatial object maps mo; = [R, GO;, geo;] which contain, respectively, the fuzzy spatial lo-
cation of the spatial fuzzy objects go, € GO, and go, € GO, in R. Let x be a fuzzy spatial predicate computa-
ble for every pair of spatial locations ((geo;(go1), geo,(go,)). The spatial join operation 8: GO; X GO, —
GOy X GO, is such that:
¢ (GO1,G0z) = {(go1, goz) € (G01,G02) | ¢ ((geo1(go1), geo2(goz) ) }-

The spatial join is an operation where two sets of fuzzy spatial objects GO, and GO, are compared, based on a
fuzzy spatial predicate computed over the representation of these sets. The result is a set of object pairs, which
satisfy the spatial restriction to some extent while, at the same time, objects individually satisfy spatial loca-
tion restriction to some extent. Examples are:

» “Find all air quality measurement facilities located very near to the main roads in VVojvodina”.

In general case, the answer to this query is a set of pairs of spatial objects (facilities, roads) where
facilities is an object that is air quality measurement facilities to some extent, located in VVojvodina
to some extent, roads is an object that is main road to some extent also located in VVojvodina to some
extent and, finally, those two objects are very near to each other to some extent.
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5. Concluding remarks

This report proposes a conceptual model of the complex fuzzy spatial objects within the ATLAS
platform. The proposed model provides for representing composite, highly complex spatial objects
described with spatial and non-spatial properties that include uncertainty, imprecision, and vagueness.
The proposed model relies on object paradigm, more precisely class pattern.

The indisputable advantage of the proposed model is its ability to incorporate uncertainty and imprecision
when describing spatial and non-spatial properties of the system under modelling.

From the other hand, reliance on the class pattern could be considered a notable disadvantage that introduces
serious restrictions on composite structure. Therefore, we are planning further research that will replace class-
based inheritance with a prototype-based one.
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