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Summary 

This report presents the class model of the complex fuzzy spatial object. Atlas Platform class model of the 
complex spatial object relies upon two basic models: 

• Linear fuzzy space proposed in [1], and 
• Formal object model of the geographic data proposed in [2].  

Linear fuzzy space mathematical models provide for basic planar imprecise geometric objects (fuzzy line, fuzzy 
polygon, fuzzy triangle, fuzzy circle), as well as the basic measurement functions (distance between fuzzy sets 
representing basic planar imprecise object), fuzzy spatial operations (fuzzy union, fuzzy intersection and convex 
fuzzy hull), and fuzzy spatial relations (coincidence, between and collinear). Then, the class model of the com-
plex fuzzy spatial object is obtained by applying linear fuzzy space mathematical models to a formal object 
model of geographic data. 
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1. Introduction 
Modelling imprecision and vagueness in spatially determined systems is an issue that attracts wide attention of 
numerous researchers in diverse application domains. Environmental science is not an exemption to that rule. 
On the contrary, the data in this field are often imprecise  (geographical location, time, observed/measured 
values, etc). On the other hand, a huge demand for modelling complex spatial objects in environmental sciences 
calls for appropriate models that include uncertainty, imprecision, and vagueness.    

In this report we present a class model of the complex planar imprecise object in ATLAS platform. 

The rest of this report consists of four sections. Following this introduction is a section two that presents funda-
mentals of the simple spatial objects modelling. Then, the section three presents formal object model of the 
geographic data proposed in [2]. Section four presents the proposed model of the complex planar imprecise 
object in ATLAS platform. Section five is a conclusion that discusses advantages and disadvantages of the 
proposed model.  

2.1. Simple object modelling 
2.1.1. Fuzzy point, linear fuzzy space, fuzzy relation 

Definition 2.1.1 Fuzzy point 𝑃𝑃 ∈ ℝ2, denoted by 𝑃𝑃� is defined by its membership function 𝜇𝜇𝑃𝑃� ∈  ℱ2, where the 
set ℱ2 contains all membership functions 𝑢𝑢:ℝ2 → [0,1]  satisfying following conditions:  

i) (∀𝑢𝑢 ∈ ℱ2)(∃1𝑃𝑃 ∈ ℝ2) 𝑢𝑢(𝑃𝑃) = 1,    
ii) (∀𝑋𝑋1,𝑋𝑋2 ∈ ℝ2)(𝜆𝜆 ∈ [0,1]) 𝑢𝑢(𝜆𝜆𝑋𝑋1 + (1 − 𝜆𝜆)𝑋𝑋2) ≥ min� 𝑢𝑢(𝑋𝑋1),𝑢𝑢(𝑋𝑋2)�, 
iii) function 𝑢𝑢 is upper semi continuous, 
iv) [𝑢𝑢]𝛼𝛼 = {𝑋𝑋|𝑋𝑋 ∈ ℝ2,𝑢𝑢(𝑋𝑋) ≥ 𝛼𝛼}  𝛼𝛼-cut of function 𝑢𝑢 is convex. 

The point from ℝ2, with membership function 𝜇𝜇𝑃𝑃�(𝑃𝑃) = 1, will be denoted by 𝑃𝑃 (𝑃𝑃 is the core of the fuzzy point  
𝑃𝑃� ), and the membership function of the point  𝑃𝑃� will be denoted by   𝜇𝜇𝑃𝑃� .  By [𝑃𝑃]𝛼𝛼 we denote the  𝛼𝛼-cut of the 
fuzzy point (this is a set from ℝ2).  

Definition 2.1.2 ℝ2 Linear fuzzy space is the set ℋ2 ⊂ ℱ2 of all functions which, in addition to the properties 
given in Definition 2.1, are: 

i) Symmetric against the core 𝑆𝑆 ∈ ℝ2   
(𝜇𝜇(𝑆𝑆) = 1),   
𝜇𝜇(𝑉𝑉) = 𝜇𝜇(𝑀𝑀) ∧  𝜇𝜇(𝑀𝑀) ≠ 0 ⇒  𝑑𝑑(𝑆𝑆,𝑉𝑉) = 𝑑𝑑(𝑆𝑆,𝑀𝑀),  
where 𝑑𝑑(𝑆𝑆,𝑀𝑀) is the distance in ℝ2. 

ii) Inverse-linear decreasing w.r.t. points’ distance from the core according to: 
If 𝑟𝑟 ≠ 0 

𝜇𝜇𝑆̃𝑆(𝑉𝑉) = max �0, 1 − 𝑑𝑑(𝑆𝑆,𝑉𝑉)
|𝑟𝑟𝑆𝑆|

�, 
if 𝑟𝑟 = 0 

𝜇𝜇𝑆̃𝑆(𝑉𝑉) = �     1      𝑖𝑖𝑖𝑖   𝑆𝑆 = 𝑉𝑉 
    0       𝑖𝑖𝑖𝑖   𝑆𝑆 ≠ 𝑉𝑉 , 

where  𝑑𝑑(𝑆𝑆,𝑉𝑉) is the distance between the point 𝑉𝑉 and the core 𝑆𝑆 (𝑉𝑉, 𝑆𝑆 ∈ 𝑅𝑅𝑛𝑛) and  𝑟𝑟 ∈ ℝ is constant.  
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Elements of that space are represented as ordered pairs  𝑆̃𝑆 = (𝑆𝑆, 𝑟𝑟𝑆𝑆) where 𝑆𝑆 ∈ ℝ2 is the core of  𝑆̃𝑆, and  𝑟𝑟𝑆𝑆 ∈ ℝ 
is the distance from the core for which the function value becomes 0; in the sequel parameter 𝑟𝑟𝑆𝑆 will be denoted 
as fuzzy support radius.  

Definition 2.1.3 Let the linear fuzzy space ℋ be defined on ℝ. Fuzzy relations  ≤𝑅𝑅𝑅𝑅 and ≤𝐿𝐿𝐿𝐿 for the set ℋ are 
defined by membership functions 

𝜇𝜇(𝐴̃𝐴 ≤𝑅𝑅𝑅𝑅 𝐵𝐵�) = �

      0       𝑖𝑖𝑖𝑖   𝐴𝐴 > 𝐵𝐵,                                 
 𝐵𝐵−𝐴𝐴
𝑟𝑟𝐴𝐴−𝑟𝑟𝐵𝐵

   𝑖𝑖𝑖𝑖  𝐴𝐴 ≤ 𝐵𝐵 ∧ 𝐴𝐴 + 𝑟𝑟𝐴𝐴 > 𝐵𝐵 + 𝑟𝑟𝐵𝐵 

     1       𝑖𝑖𝑖𝑖  𝐴𝐴 ≤ 𝐵𝐵 ∧ 𝐴𝐴 + 𝑟𝑟𝐴𝐴 ≤ 𝐵𝐵 + 𝑟𝑟𝐵𝐵 ,
                            

𝜇𝜇(𝐴̃𝐴 ≤𝐿𝐿𝐿𝐿 𝐵𝐵�) =

⎩
⎨

⎧
        0        𝑖𝑖𝑖𝑖  𝐴𝐴 > 𝐵𝐵                                        
𝐵𝐵 − 𝐴𝐴
𝑟𝑟𝐵𝐵 − 𝑟𝑟𝐴𝐴

   𝑖𝑖𝑖𝑖  𝐴𝐴 ≤ 𝐵𝐵 ∧  𝐴𝐴 − 𝑟𝑟𝐴𝐴 > 𝐵𝐵 − 𝑟𝑟𝐵𝐵

   1        𝑖𝑖𝑖𝑖   𝐴𝐴 ≤ 𝐵𝐵 ∧ 𝐴𝐴 − 𝑟𝑟𝐴𝐴 ≤ 𝐵𝐵 − 𝑟𝑟𝐵𝐵 ,

 

respectively, where  𝐴̃𝐴 = (𝐴𝐴, 𝑟𝑟𝐴𝐴) and 𝐵𝐵� = (𝐵𝐵, 𝑟𝑟𝐵𝐵) are points from  ℋ, 𝐴𝐴 is the core of 𝐴̃𝐴 and 𝑟𝑟𝐴𝐴 is a parameter 
determining the membership function of point  𝐴̃𝐴. 

2.1.2. Basic fuzzy plane geometry objects in 𝑹𝑹𝟐𝟐 linear fuzzy space 
In this section we present theoretical models of basic operations over linear fuzzy space ℋ2 defined on ℝ2, as 
well as their properties which will be used in definitions of basic fuzzy plane geometry objects. 

Definition 2.2.1 Let   𝐴̃𝐴,𝐵𝐵� ∈ ℋ2. An operator +:ℋ2 × ℋ2 → ℋ2 is called fuzzy points addition given by 

𝐴̃𝐴 + 𝐵𝐵� = (𝐴𝐴 + 𝐵𝐵, 𝑟𝑟𝐴𝐴 + 𝑟𝑟𝐵𝐵), 

where  𝐴𝐴 + 𝐵𝐵 is a vector addition, and 𝑟𝑟𝐴𝐴 + 𝑟𝑟𝐵𝐵 is a scalar addition. 

Definition 2.2.2 Let ℋ2 be a linear fuzzy space. Then a function 𝑓𝑓:ℋ2 × ℋ2 × [0,1] → ℋ2 is called linear 
combination of the fuzzy points 𝐴̃𝐴,𝐵𝐵�  ∈  ℋ2 given by 

𝑓𝑓�𝐴̃𝐴,𝐵𝐵� ,𝑢𝑢� =  𝐴̃𝐴 + 𝑢𝑢 ∙ �𝐵𝐵� − 𝐴̃𝐴�, 

where 𝑢𝑢 ∈ [0,1] and operator ∙ is a scalar multiplication of fuzzy point.  

Definition 2.2.3 Let 𝐴̃𝐴,𝐵𝐵� ∈ ℋ2 and  𝐴̃𝐴  ≠ 𝐵𝐵� . Then a point  𝑇𝑇𝐴𝐴𝐴𝐴 ∈ ℝ2 is called internal homothetic center if the 
following holds 

𝑇𝑇𝐴𝐴𝐴𝐴 = 𝐴𝐴 + 𝑎𝑎𝑟𝑟
𝑎𝑎𝑟𝑟+𝑏𝑏𝑟𝑟

(𝐵𝐵 − 𝐴𝐴), 

where  𝐴̃𝐴 = (𝐴𝐴,𝑎𝑎𝑟𝑟) and 𝐵𝐵� = (𝐵𝐵, 𝑏𝑏𝑟𝑟). 

Fuzzy points are used to describe the position of a real object when there is some uncertainty to the measured 
position. Most often this uncertainty in practical applications is ignored. There are applications in which real 
objects are not only represented by the position but the entire series of uniformly spaced points. These points 
can be distributed along a curve that has a beginning and an end. Curve that connects two points is called a line 
or path.  
If the points that represent the path are imprecise, then the whole line should be described in way similar to 
imprecise point’s description. The mathematical model of such fuzzy line follows.  

Definition 2.2.4 Let ℋ2 be a linear fuzzy space and function 𝑓𝑓 is a linear combination of the fuzzy points 𝐴̃𝐴  
and  𝐵𝐵� . Then a fuzzy set 𝐴𝐴𝐴𝐴�  is called fuzzy line if following holds 
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𝐴𝐴𝐴𝐴� = ⋃ 𝑓𝑓(𝐴̃𝐴,𝐵𝐵� ,𝑢𝑢)𝑢𝑢∈[0,1] . 

Theorem 2.2.1 Let ℋ2 be linear fuzzy space, fuzzy line 𝐴𝐴𝐴𝐴�  defined by fuzzy points 𝐴̃𝐴 and 𝐵𝐵� ∈ ℋ2. Then 
following holds  

𝐴𝐴𝐴𝐴� = 𝐵𝐵𝐵𝐵� . 

Definition 2.2.5 Let 𝐴𝐴𝐴𝐴�  be fuzzy line defined on linear fuzzy space ℋ2 and  𝑋𝑋 ∈ ℝ2. Then a fuzzy point  𝑋𝑋′� ⊂
𝐴𝐴𝐴𝐴�  is called fuzzy image of point 𝑋𝑋 on fuzzy line 𝐴𝐴𝐴𝐴� , and a real number 𝑢𝑢 ∈ [0,1]  is called eigenvalue of the 
fuzzy image 𝑋𝑋 on fuzzy line 𝐴𝐴𝐴𝐴�  if following hold 

(i) 𝑋𝑋′� = 𝐴̃𝐴 + 𝑢𝑢(𝐵𝐵� − 𝐴̃𝐴),  

(ii) 𝑑𝑑 �𝑋𝑋, �𝑋𝑋′� �
1

 � = min {𝑑𝑑(𝑋𝑋,𝑌𝑌)|∀𝑌𝑌 ∈ �𝐴𝐴𝐴𝐴� �1} , 

(iii) 𝑢𝑢 = min �1,𝑚𝑚𝑚𝑚𝑚𝑚 �0, (𝑥𝑥1−𝑎𝑎1)(𝑏𝑏1−𝑎𝑎1)+(𝑥𝑥2−𝑎𝑎2)(𝑏𝑏2−𝑎𝑎2)
(𝑏𝑏1−𝑎𝑎1)2+(𝑏𝑏2−𝑎𝑎2)2

�� , 

where 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2), 𝐴̃𝐴 = ((𝑎𝑎1,𝑎𝑎2),𝑎𝑎𝑟𝑟) i 𝐵𝐵� = ((𝑏𝑏1, 𝑏𝑏2), 𝑏𝑏𝑟𝑟).  

Remark.  If the eigenvalue of the fuzzy image 𝑋𝑋 is equal 0, then fuzzy image is the starting fuzzy point, if 
eigenvalue is equal  1 it is the final point, otherwise it is the inner point of a fuzzy line. 
 

Theorem 2.2.2 Let 𝐴𝐴𝐴𝐴� ∈ 𝐿𝐿2 be fuzzy line, 𝑋𝑋′� ∈ ℋ2 fuzzy image of point 𝑋𝑋 ∈ ℝ2 on 𝐴𝐴𝐴𝐴�   and 𝑢𝑢 ∈ [0,1]   eigen-
value of the fuzzy image 𝑋𝑋 on 𝐴𝐴𝐴𝐴� .  Then point 𝑋𝑋  belongs to fuzzy set 𝐴𝐴𝐴𝐴�  according to following 

𝜇𝜇𝐴𝐴𝐴𝐴� (𝑋𝑋) = �
      𝜇𝜇𝐴𝐴�(𝑋𝑋)    𝑖𝑖𝑖𝑖    𝑢𝑢𝑚𝑚 = 0        
𝜇𝜇𝑋𝑋�𝑇𝑇(𝑋𝑋)  𝑖𝑖𝑖𝑖 0 < 𝑢𝑢𝑚𝑚 < 1

       𝜇𝜇𝐵𝐵�(𝑋𝑋)    𝑖𝑖𝑖𝑖     𝑢𝑢𝑚𝑚 = 1          
, 

 

where fuzzy point 𝑋𝑋�𝑇𝑇 = 𝐴̃𝐴 + 𝑢𝑢𝑚𝑚(𝐵𝐵� − 𝐴̃𝐴) and  𝑢𝑢𝑚𝑚 = 𝑢𝑢 + (𝑏𝑏𝑟𝑟−𝑎𝑎𝑟𝑟)
𝑥𝑥𝑟𝑟′

𝑑𝑑�𝑋𝑋,𝑋𝑋′�2

𝑑𝑑(𝐴𝐴,𝐵𝐵)2 . 

Definition 2.2.6 Let 𝐴̃𝐴, 𝐵𝐵� , 𝐶̃𝐶 ∈ ℋ2 be fuzzy points with noncollinear cores (𝐴̃𝐴 ≠ 𝐵𝐵� ≠ 𝐶̃𝐶) and function 𝑓𝑓 is a 
linear combination of two fuzzy points.  Then the fuzzy set 𝐴𝐴𝐴𝐴𝐴𝐴�  is called a  fuzzy triangle if the following holds  

𝐴𝐴𝐴𝐴𝐴𝐴� = �𝑓𝑓(𝐴̃𝐴,�𝑓𝑓�𝐵𝐵� , 𝐶̃𝐶, 𝑣𝑣�,𝑢𝑢)
1

𝑣𝑣=0

1

𝑢𝑢=0

 

The membership function of this set is denoted by 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴� (𝑋𝑋) and determined according to the following formula 
𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴� (𝑋𝑋) = max

𝑢𝑢∈[0,1],𝑣𝑣∈[0,1]
{𝜇𝜇𝑌𝑌�(𝑋𝑋)|𝑌𝑌� = 𝑓𝑓(𝐴̃𝐴, 𝑓𝑓�𝐵𝐵� , 𝐶̃𝐶, 𝑣𝑣�,𝑢𝑢)} . 

 𝛼𝛼-cut of fuzzy triangle 𝐴𝐴𝐴𝐴𝐴𝐴�  is denoted by �𝐴𝐴𝐴𝐴𝐴𝐴��𝛼𝛼.   

Definition 2.2.7  Let 𝐴𝐴𝐴𝐴𝐴𝐴�  be a fuzzy triangle defined on fuzzy linear space ℋ2. Fuzzy point 𝑋𝑋� ⊂ 𝐴𝐴𝐴𝐴𝐴𝐴�  is called 
edge point of the fuzzy triangle 𝐴𝐴𝐴𝐴𝐴𝐴�  if for all 𝛼𝛼 ∈ [0,1] a point 𝑌𝑌 ∈ [𝑋𝑋�]𝛼𝛼 exists such that all its neighborhoods  
contain at least one point from �𝐴𝐴𝐴𝐴𝐴𝐴��𝛼𝛼 and at least one point outside of �𝐴𝐴𝐴𝐴𝐴𝐴��𝛼𝛼.  

Remark.  𝛼𝛼-cut of all edge points intersect  𝛼𝛼-cut  of fuzzy triangle in at least one point. 
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Definition 2.2.8 Let 𝐴𝐴𝐴𝐴𝐴𝐴�  be a fuzzy triangle defined on fuzzy linear space ℋ2. Fuzzy point 𝑋𝑋� ⊂ 𝐴𝐴𝐴𝐴𝐴𝐴�  is called 
inner point of fuzzy triangle 𝐴𝐴𝐴𝐴𝐴𝐴�  if it is not an edge point. 

Definition 2.2.9 Let 𝐴𝐴𝐴𝐴𝐴𝐴�  be a fuzzy triangle defined on fuzzy linear space ℋ2. Union of all edge points of the 
fuzzy triangle 𝐴𝐴𝐴𝐴𝐴𝐴�  is called fuzzy edge of fuzzy triangle 𝐴𝐴𝐴𝐴𝐴𝐴�  , denoted by  𝜕𝜕𝐴𝐴𝐴𝐴𝐴𝐴� . 

Theorem 2.2.3 Let 𝐴𝐴𝐴𝐴𝐴𝐴�  be a fuzzy triangle defined on ℋ2. Then, for every fuzzy point 𝑋𝑋� ∈
𝜕𝜕𝐴𝐴𝐴𝐴𝐴𝐴�/{𝐴̃𝐴,𝐵𝐵� , 𝐶̃𝐶} and  𝛼𝛼 ∈ [0,1] the single point 𝑇𝑇 ∈ [𝑋𝑋�]𝛼𝛼 exists such that all its neighborhoods contain at least 
one point from �𝐴𝐴𝐴𝐴𝐴𝐴��𝛼𝛼 and at least one point outside of �𝐴𝐴𝐴𝐴𝐴𝐴��𝛼𝛼. 

Theorem 2.2.4 Let 𝐴𝐴𝐴𝐴𝐴𝐴�  be a fuzzy triangle defined on linear fuzzy space ℋ2. Then for all 𝑋𝑋 ∈ ℝ2 the following 
holds 

𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴� (𝑋𝑋) = 𝜇𝜇𝐶𝐶𝐶𝐶𝐶𝐶�(𝑋𝑋) = 𝜇𝜇𝐵𝐵𝐵𝐵𝐵𝐵�(𝑋𝑋). 

Direct consequence of this proposition is that a fuzzy triangle can be represented by three fuzzy points, i.e., the 
set   {𝐴̃𝐴,𝐵𝐵� , 𝐶̃𝐶}. 

Fuzzy circle is also one of the basic planar imprecise geometrical objects.  Analogously to the definitions of 
fuzzy line and fuzzy triangle, which is an extension of a precise circle, we define a fuzzy circle as a union of 
fuzzy points. Thereby, we also take care that a newly defined geometrical object is appropriate for implemen-
tation in GIS applications. 

Definition 2.2.10 Let ℋ be a fuzzy space defined on ℝ, fuzzy relation ≤𝑅𝑅𝑅𝑅  be fuzzy ordering in linear fuzzy 
space ℋ,  𝐶𝐶 ∈ ℝ2 and 𝑅𝑅� ∈ ℋ. Then the union of all fuzzy points 𝐴̃𝐴 ∈ ℋ2 such that  

𝜇𝜇�𝑑̃𝑑�𝐶𝐶, 𝐴̃𝐴� ≤𝑅𝑅𝑅𝑅 𝑅𝑅�� = 1, 

is called fuzzy circle with center 𝐶𝐶 and radius 𝑅𝑅�.  
Fuzzy circle is represented by the ordered pair (𝐶𝐶,𝑅𝑅�). 

Theorem 2.2.5 Let �𝐶𝐶,𝑅𝑅�� be a fuzzy circle defined on linear fuzzy space ℋ2. Then the value of the fuzzy circle 
membership function in point 𝑋𝑋 ∈ 𝑅𝑅2 is determined according to the following formula 

𝜇𝜇(𝐶𝐶,𝑅𝑅�)(𝑋𝑋) = max �0,𝑚𝑚𝑚𝑚𝑚𝑚 �1, 1 − 𝑑𝑑(𝑋𝑋,𝐶𝐶)−𝑅𝑅
𝑟𝑟𝑟𝑟

��, 

where  𝑅𝑅� = (𝑅𝑅, 𝑟𝑟𝑟𝑟). 
 

Definition 2.2.11. Let ℋ2 be a linear fuzzy space and 𝒜̃𝒜 = {𝐴𝐴1� , . .𝐴𝐴𝑛𝑛�} be the ordered set of the fuzzy points 
𝐴𝐴𝚤𝚤� ∈ ℋ2. Then  linear fuzzy path 𝑠𝑠(𝒜̃𝒜) is given by 

𝑠𝑠(𝒜̃𝒜) = �𝐴𝐴𝚤𝚤𝐴𝐴𝚤𝚤+1�  
𝑛𝑛−1

𝑖𝑖=1

 

If 𝑋𝑋 ∈ ℝ2, then the membership function 𝜇𝜇𝑠𝑠(𝒜̃𝒜) of the linear fuzzy path 𝑠𝑠(𝒜̃𝒜) is given by 
                        𝜇𝜇𝑠𝑠(𝒜̃𝒜)(𝑋𝑋) = max

𝑖𝑖=1,𝑛𝑛−1
𝜇𝜇𝐴𝐴𝚤𝚤𝐴𝐴𝚤𝚤+1� (𝑋𝑋). 

Definition 2.2.12 Let ℋ2 be a linear fuzzy space and 𝒜̃𝒜 = {𝐴𝐴1� , . .𝐴𝐴𝑛𝑛�} be the ordered set of the fuzzy points 
𝐴𝐴𝚤𝚤� ∈ ℋ2.Then  closed linear fuzzy path 𝑐𝑐(𝒜̃𝒜) is given by 
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𝑐𝑐(𝒜̃𝒜) = 𝑠𝑠(𝒜̃𝒜)�𝐴𝐴𝑛𝑛𝐴𝐴1�  

 
If 𝑋𝑋 ∈ ℝ2, then the membership function 𝜇𝜇𝑐𝑐(𝒜̃𝒜) of the closed linear fuzzy path 𝑐𝑐(𝒜̃𝒜) is given by 

𝜇𝜇𝑐𝑐(𝒜̃𝒜)(𝑋𝑋) = max{𝜇𝜇𝑠𝑠(𝒜̃𝒜)(𝑋𝑋), 𝜇𝜇𝐴𝐴𝑛𝑛𝐴𝐴1� (𝑋𝑋)}. 

Definition 2.2.13 Let ℋ2 be a linear fuzzy space and 𝒜̃𝒜 = {𝐴𝐴1�, . .𝐴𝐴𝑛𝑛�} be the ordered set of the fuzzy points 𝐴𝐴𝚤𝚤� ∈ ℋ2. Then, 
a  linear fuzzy polygon 𝑝𝑝(𝒜̃𝒜) is given by 

𝜇𝜇𝑝𝑝(𝒜̃𝒜)(𝑋𝑋) = �
     1                𝑖𝑖𝑖𝑖 𝑋𝑋 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐(𝒜̃𝒜)0
𝜇𝜇𝑐𝑐(𝒜̃𝒜)(𝑋𝑋)      𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,                              

where 𝑐𝑐(𝒜̃𝒜)0 is the core of the fuzzy set 𝑐𝑐(𝒜̃𝒜). 
 

2.1.3. Spatial measurement in 𝐑𝐑𝟐𝟐 linear fuzzy space 

Measurement of the space, especially a distance between plane geometry objects is defined as a generalization 
of the concept of physical distance. Distance function or metric is a function that behaves according to specific 
set of rules. In this section we present the basic distance functions between  fuzzy plane geometry objects and 
their  main properties according to the set of rules presented in papers [1], [20] 
 
Definition 2.3.1 Let ℋ2 be a linear fuzzy space,  𝑑̃𝑑:ℋ2 × ℋ2 → ℋ+ , 𝐿𝐿,𝑅𝑅: [0,1] × [0,1] → [0,1] be symmet-
ric, associative and non-decreasing for both arguments, and 𝐿𝐿(0,0) = 0, 𝑅𝑅(1,1) = 1. The ordered quadruple 
(ℋ2, 𝑑̃𝑑, 𝐿𝐿,𝑅𝑅) is called fuzzy metric space and the function 𝑑̃𝑑 is a fuzzy metric, if and only if the following 
conditions hold: 

(i) 𝑑̃𝑑�𝑋𝑋� ,𝑌𝑌�� = 0�   ⇔   [𝑋𝑋�]1 = [𝑌𝑌�]1. 
(ii) 𝑑̃𝑑�𝑋𝑋� ,𝑌𝑌�� = 𝑑̃𝑑(𝑌𝑌� ,𝑋𝑋�)  for each  𝑋𝑋� ,𝑌𝑌� ∈ ℋ2. 
(iii) ∀𝑋𝑋� ,𝑌𝑌� ∈ ℋ2: 

a. 𝑑̃𝑑�𝑋𝑋� ,𝑌𝑌��(𝑠𝑠 + 𝑡𝑡) ≥ 𝐿𝐿�𝑑𝑑(𝑥𝑥, 𝑧𝑧)(𝑠𝑠),𝑑𝑑(𝑧𝑧,𝑦𝑦)(𝑡𝑡)�  if 
𝑠𝑠 ≤ 𝜆𝜆1(𝑥𝑥, 𝑧𝑧) ∧   𝑡𝑡 ≤ 𝜆𝜆1(𝑧𝑧,𝑦𝑦) ∧   𝑠𝑠 + 𝑡𝑡 ≤  𝜆𝜆1(𝑥𝑥,𝑦𝑦) 

b. 𝑑̃𝑑�𝑋𝑋� ,𝑌𝑌��(𝑠𝑠 + 𝑡𝑡) ≤ 𝑅𝑅�𝑑𝑑(𝑥𝑥, 𝑧𝑧)(𝑠𝑠),𝑑𝑑(𝑧𝑧,𝑦𝑦)(𝑡𝑡)� if 
𝑠𝑠 ≥ 𝜆𝜆1(𝑥𝑥, 𝑧𝑧) ∧   𝑡𝑡 ≥ 𝜆𝜆1(𝑧𝑧,𝑦𝑦) ∧   𝑠𝑠 + 𝑡𝑡 ≥  𝜆𝜆1(𝑥𝑥,𝑦𝑦), 

where  the 𝛼𝛼-cut of fuzzy number 𝑑̃𝑑(𝑥𝑥,𝑦𝑦) is given by �𝑑̃𝑑�𝑋𝑋� ,𝑌𝑌���𝛼𝛼 = [𝜆𝜆𝛼𝛼(𝑥𝑥,𝑦𝑦),𝜌𝜌𝛼𝛼(𝑥𝑥,𝑦𝑦)] (𝑥𝑥,𝑦𝑦 ∈ ℝ+, 0 < 𝛼𝛼 ≤
1). The fuzzy zero, 0�  is a non-negative fuzzy number with [0�]1 = 0.   
 
Remark: Following distance functions are fuzzy metrics. 

(i) 𝑑̃𝑑�𝑋𝑋� ,𝑌𝑌�� =𝐷𝐷𝐷𝐷 (𝑑𝑑(𝑋𝑋,𝑌𝑌), (𝑟𝑟𝑋𝑋 + 𝑟𝑟𝑌𝑌))  
(ii) 𝑑̃𝑑�𝑋𝑋� ,𝑌𝑌�� =𝐷𝐷𝐷𝐷 (𝑑𝑑(𝑋𝑋,𝑌𝑌),𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑋𝑋 , 𝑟𝑟𝑌𝑌)) 
(iii) 𝑑̃𝑑�𝑋𝑋� ,𝑌𝑌�� =𝐷𝐷𝐷𝐷 (𝑑𝑑(𝑋𝑋,𝑌𝑌), |𝑟𝑟𝑋𝑋 − 𝑟𝑟𝑌𝑌|) 

Distance (iii) also satisfies set of rulles which define clasic metric.  
 
In the following definitions we extend distance between fuzzy points to distance between different fuzzy plane 
geometric objects, such as distance between fuzzy point and fuzzy line, fuzzy point and fuzzy triangle and at 
last between two fuzzy triangles. 
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Definition 2.3.2 Let ℋ2 be a linear fuzzy space, ℒ2 set of all fuzzy linesdefined on  ℋ2, 𝑑̃𝑑 is fuzzy distance 
between fuzzy points, and  𝜇𝜇𝐿𝐿  is membership function of the fuzzy relation minimal (Definition 15. in the paper 
[1]).  The function  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑:ℋ2 × ℒ2 →  ℋ+ is called distance between fuzzy point and fuzzy line if the following 
holds: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑇𝑇� ,𝐴𝐴𝐴𝐴� � = 𝑑̃𝑑(𝑇𝑇� ,𝑋𝑋�) 
where  𝑋𝑋� ∈ 𝐴𝐴𝐴𝐴�   such that  𝜇𝜇𝐿𝐿 �𝑑̃𝑑�𝑇𝑇� ,𝑋𝑋��� = ℎ𝑔𝑔𝑔𝑔��𝑑̃𝑑�𝑇𝑇� ,𝑌𝑌���∀𝑌𝑌� ∈ 𝐴𝐴𝐴𝐴� ��. 
 

Definition 2.3.3 Let ℋ2 be linear fuzzy space, 𝒯𝒯2 be a set of all fuzzy triangles defined on ℋ2, 𝑑̃𝑑 is fuzzy 
distance between fuzzy points and   𝜇𝜇𝐿𝐿  is membership function of the fuzzy relation minimal. The function 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑:ℋ2 × 𝒯𝒯2 →  ℋ+ is called distance between fuzzy point and fuzzy triangle if the following holds: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑇𝑇� ,𝐴𝐴𝐴𝐴𝐴𝐴�� = 𝑑̃𝑑(𝑇𝑇� ,𝑋𝑋�) 
where 𝑋𝑋� ∈ 𝐴𝐴𝐴𝐴𝐴𝐴�  such that  𝜇𝜇𝐿𝐿 �𝑑̃𝑑�𝑇𝑇� ,𝑋𝑋��� = ℎ𝑔𝑔𝑔𝑔��𝑑̃𝑑�𝑇𝑇� ,𝑌𝑌���∀𝑌𝑌� ∈ 𝐴𝐴𝐵𝐵𝐵𝐵��� 
 

Definition 2.3.4 Let ℋ2 be linear fuzzy space, ℒ2 set of all fuzzy lines on ℋ2  𝑑̃𝑑 is fuzzy distance between 
fuzzy points and   𝜇𝜇𝐿𝐿  is membership function of the fuzzy relation minimal. Th function 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑:ℒ2 × ℒ2 →  ℋ+ 
is called distance between two fuzzy lines if the following holds: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐴𝐴𝐴𝐴� ,𝐶𝐶𝐶𝐶� � = 𝑑̃𝑑(𝑋𝑋� ,𝑌𝑌�) 
where 𝑋𝑋� ∈ 𝐴𝐴𝐴𝐴�  and 𝑌𝑌� ∈ 𝐶𝐶𝐶𝐶�   such that 

𝜇𝜇𝐿𝐿 �𝑑̃𝑑�𝑋𝑋�,𝑌𝑌��� = ℎ𝑔𝑔𝑔𝑔��𝑑̃𝑑�𝑄𝑄� ,𝑊𝑊� ��∀𝑄𝑄� ∈ 𝐴𝐴𝐴𝐴� ∧ ∀𝑊𝑊� ∈ 𝐶𝐶𝐶𝐶� �� 
 

Definition 2.3.5 Let ℋ2 be a linear fuzzy space,  ℒ2 be a set of all fuzzy lines on ℋ2,  𝒯𝒯2 be a set of all fuzzy 
triangles, 𝑑̃𝑑 is fuzzy distance between fuzzy points and   𝜇𝜇𝐿𝐿  is membership function of the fuzzy relation mini-
mal.  The function 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑:ℒ2 × 𝒯𝒯2 →  ℋ+ is called distance between fuzzy line and fuzzy triangle if the follow-
ing holds: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐴𝐴𝐴𝐴� ,𝐶𝐶𝐶𝐶𝐶𝐶�� = 𝑑̃𝑑(𝑋𝑋� ,𝑌𝑌�) 
 
where  𝑋𝑋� ∈ 𝐴𝐴𝐴𝐴�  and 𝑌𝑌� ∈ 𝐶𝐶𝐶𝐶𝐶𝐶�  satisfies condition 

𝜇𝜇𝐿𝐿 �𝑑̃𝑑�𝑋𝑋�,𝑌𝑌��� = ℎ𝑔𝑔𝑔𝑔��𝑑̃𝑑�𝑄𝑄� ,𝑊𝑊� ��∀𝑄𝑄� ∈ 𝐴𝐴𝐴𝐴� ∧ ∀𝑊𝑊� ∈ 𝐶𝐶𝐶𝐶𝐶𝐶��� 
 

Definition 2.3.6 Let ℋ2 be linear fuzzy space, 𝒯𝒯2 be a set of all fuzzy triangles on ℋ2,  𝑑̃𝑑 is fuzzy distance 
between fuzzy points and   𝜇𝜇𝐿𝐿  is membership function of the fuzzy relation minimal.  The function 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑:𝒯𝒯2 × 𝒯𝒯2 →  ℋ+ is called distance between two fuzzy triangles if the following holds: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐴𝐴𝐴𝐴𝐴𝐴� ,𝐷𝐷𝐷𝐷𝐷𝐷�� = 𝑑̃𝑑(𝑋𝑋� ,𝑌𝑌�) 
 
where fuzzy points 𝑋𝑋� ∈ 𝐴𝐴𝐴𝐴𝐴𝐴�  and 𝑌𝑌� ∈ 𝐷𝐷𝐷𝐷𝐷𝐷�  such that 
𝜇𝜇𝐿𝐿 �𝑑̃𝑑�𝑋𝑋� ,𝑌𝑌��� = ℎ𝑔𝑔𝑔𝑔��𝑑̃𝑑�𝑄𝑄� ,𝑊𝑊� ��∀𝑄𝑄� ∈ 𝐴𝐴𝐴𝐴𝐴𝐴� ∧∀𝑊𝑊� ∈ 𝐷𝐷𝐷𝐷𝐷𝐷���. 
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2.1.4. Spatial relations in 𝑹𝑹𝟐𝟐 linear fuzzy space 
Spatial relations (predicates) are functions that are used to establish mutual relations between the fuzzy geomet-
ric objects. The basic spatial relations are coincide, between and collinear. In this section we give their defini-
tions and basic properties.  
Fuzzy relation coincidence expresses the degree of truth that two fuzzy points are on the same place. 

Definition 2.4.1 Let 𝜆𝜆 be the Lebesgue measure on the set [0,1] and ℋ2 is a linear fuzzy space. The fuzzy 
relation 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:ℋ2 × ℋ2 → [0,1] is fuzzy coincidence represented by the following membership function 

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵�� = 𝜆𝜆({𝛼𝛼 | �𝐴̃𝐴�𝛼𝛼 ∩ [𝐵𝐵� ]𝛼𝛼 ≠ ∅}). 

Remark. Since the lowest 𝛼𝛼 is always 0, then a membership function of the fuzzy coincidence is given by 

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵�� = 𝑚𝑚𝑚𝑚𝑚𝑚{𝛼𝛼 | �𝐴̃𝐴�𝛼𝛼 ∩ [𝐵𝐵� ]𝛼𝛼 ≠ ∅}. 

Proposition  
“Fuzzy point 𝐴̃𝐴 is coincident to fuzzy point  𝐵𝐵�” 

is partially true with the truth degree 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛�𝐴̃𝐴,𝐵𝐵��; in the Theorem 4.1 we present method for its calculation. 

Theorem 2.4.1 Let the fuzzy relation coin be a fuzzy coincidence. Then the membership function of the fuzzy 
relation fuzzy coincidence is determined according to the following formula 
 

𝜇𝜇𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜�𝐴̃𝐴,𝐵𝐵�� =

⎩
⎪
⎨

⎪
⎧  0                         𝑖𝑖𝑖𝑖   |𝑎𝑎𝑟𝑟| + |𝑏𝑏𝑟𝑟| = 0 ∧ 𝑑𝑑(𝐴𝐴,𝐵𝐵) ≠ 0,

max �0, 1 −
𝑑𝑑(𝐴𝐴,𝐵𝐵)

|𝑎𝑎𝑟𝑟| + |𝑏𝑏𝑟𝑟|
�     𝑖𝑖𝑖𝑖      |𝑎𝑎𝑟𝑟| + |𝑏𝑏𝑟𝑟| ≠ 0,           

 1                   𝑖𝑖𝑖𝑖     |𝑎𝑎𝑟𝑟| + |𝑏𝑏𝑟𝑟| = 0 ∧ 𝑑𝑑(𝐴𝐴,𝐵𝐵) = 0 .

 

 
Fuzzy relation contains or between is a measure that fuzzy point belongs to fuzzy line or fuzzy line contains 
fuzzy point.   

Definition 2.4.2 Let 𝜆𝜆 be Lebesgue measure on the set [0,1], ℋ2 linear fuzzy space and ℒ2 be set of all fuzzy 
lines defined on ℋ2. Then fuzzy relation 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:ℋ2 × ℒ2 → [0,1] is fuzzy contain represented by following 
membership function 

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵𝐵𝐵� � = 𝜆𝜆({𝛼𝛼 | �𝐴̃𝐴�𝛼𝛼 ∩ �𝐵𝐵𝐵𝐵� �𝛼𝛼 ≠ ∅}). 

Remark. Its membership function could be also represented as  
 
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵𝐵𝐵� � = 𝜆𝜆({𝛼𝛼|∃𝑢𝑢 ∈ [0,1] ∧ ∃𝑋𝑋 ∈ �𝐴̃𝐴�𝛼𝛼 ∧ ∃𝑌𝑌,𝑍𝑍 ∈ �𝐵𝐵𝐵𝐵� �𝛼𝛼 ∧  𝑋𝑋 = 𝑌𝑌 + 𝑢𝑢(𝑍𝑍 − 𝑌𝑌)}). 
Proposition  
“Fuzzy line 𝐵𝐵𝐵𝐵�  contain fuzzy point  𝐴̃𝐴” 
is partially true with the truth degree  𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵𝐵𝐵� �; in the Theorem 4.2 we present method for its efficient 
calculation.  

Theorem 2.4.2 Let 𝐴̃𝐴,𝐵𝐵� , 𝐶̃𝐶 ∈ ℋ2 be fuzzy points defined on ℋ2 linear fuzzy space, 𝑢𝑢 ∈ [0,1] and 𝐴𝐴′� be fuzzy 
image of point 𝐴𝐴 on fuzzy line  𝐵𝐵𝐵𝐵� . Points 𝑇𝑇𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴  are internal homothetic centre fuzzy points for fuzzy 
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points  𝐴̃𝐴 and 𝐵𝐵�  and 𝐴̃𝐴 and 𝐶̃𝐶 respectively. Then the membership function of the fuzzy relation fuzzy contain is 
determined according to the following formula 

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵𝐵𝐵� � = � 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐴𝐴′�� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗𝑗𝑗 𝑢𝑢 ∈ {0,1}
       𝜇𝜇𝐴𝐴�(𝐴𝐴∗)𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗𝑗𝑗 𝑢𝑢 ∈ (0,1)    ,

 

where point 𝐴𝐴∗ is a projection of core of  𝐴̃𝐴 on the line passing through the points 𝑇𝑇𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴 .  
 
Collinearity is also one of the fundamental relations between three points in plane geometry. In the following 
definition we will present our definition of  fuzzy collinearity in fuzzy linear space, as well as the method for its 
practical computation. 

Definition 2.4.3 Let 𝐴̃𝐴,𝐵𝐵� , 𝐶̃𝐶 ∈ ℋ2 be a fuzzy points defined on ℋ2 linear fuzzy space and 𝜆𝜆  be Lebesgue 
measure on the set [0,1]. The fuzzy relation 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:ℋ2 × ℋ2 × ℋ2 → [0,1] is  fuzzy collinearity between three 
fuzzy points and it is represented by following membership function 

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵� , 𝐶̃𝐶� = 𝜆𝜆{𝛼𝛼|∃𝑢𝑢 ∈ 𝑅𝑅 ∧ ∃𝑋𝑋 ∈ �𝐴̃𝐴�𝛼𝛼 ∧ ∃𝑌𝑌 ∈ [𝐵𝐵� ]𝛼𝛼 ∧  ∃𝑍𝑍 ∈ �𝐶̃𝐶�𝛼𝛼 ∧   𝐴𝐴 = 𝐵𝐵 + 𝑢𝑢(𝐶𝐶 − 𝐵𝐵)} . 

Proposition  
"Fuzzy points 𝐴̃𝐴,𝐵𝐵�  and 𝐶̃𝐶 are collinear" 

is partially true with the truth degree 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵� , 𝐶̃𝐶�; in the Theorem 4.3 we present method for its calculation. 

Theorem 2.4.3 Let 𝐴̃𝐴,𝐵𝐵� , 𝐶̃𝐶 ∈ ℋ2, fuzzy relation 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  be fuzzy contain. Then a membership function of the 
fuzzy relation fuzzy colinearity is determined according to the following formula 

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵� , 𝐶̃𝐶� = max �𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴̃𝐴,𝐵𝐵𝐵𝐵� �, 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐵𝐵� ,𝐴𝐴𝐴𝐴� �, 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐶̃𝐶,𝐴𝐴𝐴𝐴� �� .   

3. Formal object model of the geographic data 
In this section we present the formal object model of the geographic data [2] which is the basis for our model 
of complex fuzzy objects presented in section 4. 
 
Definition 3.1. An object o can be constructed out of other objects o1, ...on, in which case o is called complex 
and o1, ...on are called the components of o. If an object is not complex, then it is called simple. Classes can be 
structured into hierarchies; the ancestors of a class 𝐶𝐶 in the hierarchy are called the superclasses of 𝐶𝐶. Classes 
are divided into conventional classes and geographical classes (or geo-classes). The geo-classes model geo-
graphical fields and objects, whereas the conventional classes correspond to classes whose instances are non-
spatial objects.  Each geographical class of objects has both locational and conventional attributes.  

Definition 3.2. The conventional attributes are assumed to be derived from a universe 𝑼𝑼 of descriptive attributes 
{𝐴𝐴1, . . . ,𝐴𝐴𝑛𝑛}, defined on domains 𝐷𝐷(𝐴𝐴1), . . . ,𝐷𝐷(𝐴𝐴𝑛𝑛).  
 

3.1. Basic model hierarchy 
The basic model hierarchy recognizes following classes: Graphical Region, Graphical Field, Geo-Object, and 
Geo-Object Map. 

Definition 3.1.1  A set of points 𝑅𝑅 which is a subset of ℜ2 is called a geographical region. 
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Definition 3.1.2 Let 𝑅𝑅 be a geographical region. A geo-field 𝑓𝑓 is an object [𝑎𝑎1, . . .𝑎𝑎𝑛𝑛, 𝜆𝜆 ], where 𝑎𝑎𝑖𝑖 ∈ 𝐷𝐷(𝐴𝐴𝐴𝐴) 
and 𝜆𝜆 ∶   𝑅𝑅 →  𝑉𝑉  defines a mapping between points in 𝑅𝑅 and values on a domain 𝑉𝑉. 
In this model, the geographical fields can be specialized. Depending on the range of the variable, the following 
subclasses of GEO-FIELD are defined: 

• THEMATICAL - an instance of this class, called a thematical geo-field, defines a mapping 𝜆𝜆: 𝑅𝑅 →  𝑉𝑉 
such that 𝑉𝑉 is a finite denumerable set. The elements of 𝑉𝑉 are called geo-classes and, intuitively, 
define the themes of a thematical map. 

• NUMERICAL - an instance of this class, called a digital terrain model or simply a DTM, defines a map-
ping 𝜆𝜆: 𝑅𝑅 →  𝑉𝑉 such that 𝑉𝑉 is the set of real values. 

• REMOTESENSINGDATA - a specialization of the NUMERICAL class, whose instances have a range 𝑉𝑉 
which is a set of discrete values obtained by quantization of the response of the earth’s surface to 
incident radiation, obtained by an active or passive sensor. This class is particularly useful to integrate 
remote sensing images into a GIS. 

Geo-fields can be represented in a GIS in various formats; digital terrain models can be represented by regular 
grids or triangular grids, thematic maps can be represented by a topologically-structured set of vectors or by a 
symbolic array (raster representation), and images are usually represented by an array of values (raster repre-
sentation).  
 
Definition 3.1.3 Given a set of geographical regions 𝑅𝑅1, . . .𝑅𝑅𝑛𝑛, a geo-object 𝑔𝑔𝑔𝑔 is an object 
[𝑎𝑎1, . . .𝑎𝑎𝑛𝑛,𝑔𝑔𝑔𝑔𝑔𝑔1, . . . ,𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛], composed by the values 𝑎𝑎𝑖𝑖 ∈ 𝐷𝐷(𝐴𝐴𝐴𝐴)  and by a set of geographical locations 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 
(where 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 ⊆  𝑅𝑅𝑖𝑖). We shall indicate the 𝑖𝑖-th attribute of 𝑔𝑔𝑔𝑔 by 𝑔𝑔𝑔𝑔.𝐴𝐴𝑖𝑖 and the i-th geographical location of 
𝑔𝑔𝑔𝑔 by 𝑔𝑔𝑔𝑔.𝑅𝑅𝑖𝑖. 
Geo-objects represent individualizable entities of the geographic domain. They are phenomena that may have 
one or more graphical representations, which correspond to the geo-referenced set of coordinates that describe 
the object’s location. In simple words, an object is a unique element that can be represented in one or more 
points in space, and which has various descriptive attributes. This definition allows for multiple geometrical 
representations to be assigned to the same geo-object. 
 
Definition 3.1.4 Let 𝑅𝑅 be a geographical region. A geo-object map 𝑚𝑚𝑚𝑚 is an object [𝑅𝑅,𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔𝑔𝑔] such that 𝐺𝐺𝐺𝐺 
is a set of geo-objects and 𝑔𝑔𝑔𝑔𝑔𝑔 is a mapping 𝐺𝐺𝑂𝑂 →  𝑅𝑅, which assigns, for each geo-object 𝑔𝑔𝑔𝑔 ∈  𝐺𝐺𝐺𝐺, a location 
𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔𝑔𝑔) in 𝑅𝑅. 
 
In a GIS, each geographical object is associated to one or more geographical locations. Since most applications 
do not deal with isolated elements in space, it is convenient to store the graphical representation of geo-objects 
together with its neighbors. These features lead to introduction of the concept of geo-object maps, which group 
together geo-objects for a given cartographic projection and geographical region. 
 

3.2. Operations on geographical data 
The very same model suggests three main types of geographical algebras, defining operations on geographical 
data: 

• Fields algebra: manipulation of fields. 
• Geo-objects algebra: descriptive and spatial properties based selection and query of geo-objects. 
• Combined operations: generation of geo-object maps from fields, and generation of fields from geo-

objects. 
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3.2.1. Fields algebra 
There are three basic types of fields’ operators in the model: point, neighborhood and zonal. 

3.2.1.1. Point operators 
A point operator produces a new geo-field, whose value in each point 𝑝𝑝 depends only on the values in 𝑝𝑝 in the 
input geo-fields. Point operations are specified as a mapping between the ranges of the input and output fields. 
Formal definition follows. 
Definition 3.2.1 Let 𝑅𝑅 be a geographical region, 𝑉𝑉1 ,𝑉𝑉2, . .𝑉𝑉𝑛𝑛+1 sets which define possible ranges for geo-fields, 
and 𝐹𝐹𝑖𝑖  (𝑖𝑖 = 1, . . ,𝑛𝑛 + 1) be the class of all geo-fields which have 𝑅𝑅 as a location and 𝑉𝑉𝑖𝑖 as its range. 
The point operation Π: 𝐹𝐹1  ×  𝐹𝐹2  𝐹𝐹𝑛𝑛+1 induces a function 𝑝𝑝 such that, for every geo-field 𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑖𝑖  (𝑖𝑖 =
1, . . ,𝑛𝑛): 
𝑓𝑓𝑛𝑛+1(𝑝𝑝)  =  𝑝𝑝 (𝑓𝑓1(𝑝𝑝), . . . ,  𝑓𝑓𝑛𝑛(𝑝𝑝)),∀ 𝑝𝑝 ∈  𝑅𝑅. where the spatial values of the output geo-field 𝑓𝑓𝑛𝑛+1 ∈  𝐹𝐹𝑛𝑛+1 are 
defined by the mapping 𝜆𝜆𝑛𝑛+1: 𝑀𝑀 → 𝑉𝑉𝑛𝑛+1. 
Point operators include transformation operators, mathematical functions, boolean operations, comparison op-
erators and functions such as finding extremes and averages. The value of the output field at each location is a 
function only of the input values at the corresponding location. 

3.2.1.2. Neighborhood operators  
In this class of operators, the output field is computed based on the values of a continuously-varying surface in 
the neighborhood of each location of the input field. What follows is the formal definition of the neighborhood 
operations on geo-fields preceded by the definition of the concept neighborhood in geographical region. 
Definition 3.2.2 Given a geographical region 𝑅𝑅, a set of 𝑃𝑃 ⊆  𝑅𝑅 is said to be connected iff, for any two points 
𝑝𝑝1,𝑝𝑝2 ∈ 𝑃𝑃 there is a line connecting these two points which is entirely contained in 𝑅𝑅. A neighborhood in 𝑅𝑅 is 
a mapping 𝑁𝑁: 𝑅𝑅 →  2𝑅𝑅, such that ∀ 𝑝𝑝 ∈ 𝑅𝑅, 𝑝𝑝 ∈ 𝑁𝑁(𝑝𝑝) and 𝑁𝑁(𝑝𝑝) are connected. 
Definition 3.2.3  Let R be a geographical region and 𝐹𝐹0  and 𝐹𝐹1 the sets of geo-fields which are defined over R 
and whose range is 𝑉𝑉𝑖𝑖 , 𝑖𝑖 =  0, 1. Let 𝑁𝑁: 𝑅𝑅 →  2𝑅𝑅 and 𝜐𝜐: 2𝑉𝑉1  →  𝑉𝑉0. The neighborhood operation 𝛹𝛹: 𝐹𝐹1 →   𝐹𝐹0  
induced by 𝜐𝜐 is such that: 
∀𝑓𝑓1  ∈  𝐹𝐹1 ,𝛹𝛹( 𝑓𝑓1)  =  𝑓𝑓0  ⇔  𝑓𝑓0 (𝑝𝑝)  =  𝜐𝜐 ({𝜆𝜆1(𝑥𝑥) | 𝑥𝑥 ∈  𝑁𝑁(𝑝𝑝)}),∀ 𝑝𝑝 ∈  𝑅𝑅. 
 
 

3.2.1.3. Zonal operations  
This is a special class of neighborhood operators, where one geo-field (usually a thematic map) is used as a 
spatial restriction on the operators on another geo-field (usually a DTM). 
Definition 3.2.4  The zonal operation 𝑍𝑍 on a numerical geo-field 𝑓𝑓1, defined by 𝜆𝜆1: 𝑅𝑅 → 𝑉𝑉1, (where 𝑉𝑉1 is the set 
of reals), and a thematic geo-field 𝑓𝑓2, defined by 𝜆𝜆2: 𝑅𝑅 → 𝑉𝑉2, (where 𝑉𝑉21 is a discrete set { 𝑣𝑣1, . . . 𝑣𝑣𝑛𝑛} ), and a 
local function 𝜐𝜐 is such that: 
𝑍𝑍( 𝑓𝑓1)  =  𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛  | 𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛  (𝑝𝑝)  =  𝜐𝜐 (𝜆𝜆1 (𝑥𝑥), 𝑥𝑥  ∈  𝐿𝐿(𝑝𝑝)) and the zonal region 𝐿𝐿(𝑝𝑝) satisfies 
∀ 𝑝𝑝 ∈  𝑅𝑅,∃ 𝐿𝐿(𝑝𝑝) ⊂ 𝑅𝑅 ∧  𝑝𝑝 ∈ 𝐿𝐿(𝑝𝑝), such that 𝑓𝑓2(𝑥𝑥)  =  𝑣𝑣1 | ∀ 𝑥𝑥 ∈ 𝐿𝐿(𝑝𝑝)  . 
 

3.2.2. Geo-Objects Algebra 
3.2.2.1. Spatial Relationships 

In the proposed model, geo-objects are represented as 2D geometries (points, lines and regions). As the opera-
tions of the Geo-objects algebra may involve spatial restrictions, the model defines spatial relationships divided 
in following categories: 

• topological relationships, such as “inside” and “adjacent to”, which are invariant to rotation, translation, 
and scaling transformations.  
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• directional relationships, such as “above” and “beside”.  
• metrical relationships, derived from the distance operations. 

In the proposed model, only topological and metrical relationships on R2 are considered, based on the following 
definitions: 

• An area 𝐴𝐴 is a 2D set of points of dimension 2, whose interior 𝐴𝐴𝑜𝑜 is connected (with no holes) and 
which has a connected frontier 𝛿𝛿𝛿𝛿. 

• A line 𝐿𝐿 is a set of connected points of dimension 1, whose frontier 𝛿𝛿𝛿𝛿 is the first and the last point or 
an empty set in the case of a circular line (an “island”), and its interior 𝐿𝐿𝑜𝑜 is the set of the other points. 

• A point 𝑃𝑃 is a set of dimension 0, whose interior 𝐿𝐿𝑜𝑜 is the point itself and whose frontier 𝛿𝛿𝛿𝛿 is empty. 

To analyze the topological relationships on R2, this model considers the dimension of the intersection between 
the two sets, with a minimal set of five relationships (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ, 𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) which are 
applicable to all cases. The formal definitions of these relationships are given below. 
The 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 relationship is applicable to area-area, line-area, line-line, point-area and point-line situations. A set 
of points 𝑆𝑆1 touches another set 𝑆𝑆2 when they have points in common, but their interiors do not: 

𝑆𝑆1 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑆𝑆2 ⇔  (𝑆𝑆1  ∩  𝑆𝑆2  ≠  ∅)  ∧ (𝑆𝑆1𝑜𝑜 ∩  𝑆𝑆2𝑜𝑜  =  ∅) 
The 𝒊𝒊𝒊𝒊 relationship is applicable to area-area, line-area, point-area and point-line situations. A set of points is 
in another when their intersection is the first set: 
𝑆𝑆1 𝑖𝑖𝑖𝑖 𝑆𝑆2 ⇔  𝑆𝑆1  ∩  𝑆𝑆2  =  𝑆𝑆1. 
The 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 relationship is applicable in the case of line-line and line-area situations.  
A line 𝐿𝐿 crosses an area 𝐴𝐴 when their interiors meet and the intersection of the two sets is not the line itself; two 
lines cross when their interiors have a nonempty intersection and this intersections is a set of points of dimension 
0: 
𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴 ⇔  (𝐿𝐿𝑜𝑜 ∩  𝐴𝐴𝑜𝑜  ≠  ∅)  ∧  ((𝐿𝐿 ∩  𝐴𝐴)  ≠  𝐿𝐿). 
𝐿𝐿1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿2 ⇔  (𝐿𝐿1𝑜𝑜 ∩ 𝐿𝐿1𝑜𝑜  ≠  ∅)  ∧  (𝑑𝑑𝑑𝑑𝑑𝑑 (𝐿𝐿1 ∩ 𝐿𝐿2 )  =  0. 
The 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 relationship is applicable to area-area, line-line and point-point situations.  
Two point sets 𝑆𝑆1 and 𝑆𝑆2 overlap when their intersection is different from them, but forms a set of points of the 
same dimension: 
𝑆𝑆1 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆2 ⇔  (𝑆𝑆1 ∩  𝑆𝑆2 ≠  𝑆𝑆1 )  ∧ (𝑆𝑆1 ∩  𝑆𝑆2 ≠  𝑆𝑆2 )  ∧ (𝑑𝑑𝑑𝑑𝑑𝑑 (𝑆𝑆1𝑜𝑜 ∩ 𝑆𝑆2𝑜𝑜)  =  𝑑𝑑𝑑𝑑𝑑𝑑(𝑆𝑆1𝑜𝑜)). 

3.2.2.2. Spatial operations 
In order to define the spatial operations over geo-objects, it is necessary to establish the notion of a computable 
spatial predicate. 
Definition 3.2.5 Let 𝑅𝑅 be a geographical region, and 𝐺𝐺𝐺𝐺 a set of geo-objects which have representations in 𝑅𝑅, 
defined by an object map 𝑜𝑜𝑜𝑜 = [𝑅𝑅,𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔𝑔𝑔]. A computable spatial predicate 𝐱𝐱 is a spatial restriction, defined 
by a topological relationship (inside, touch, cross, overlap and disjoint) or a metrical relationship, which can be 
computed over the representations 𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔𝑔𝑔𝑖𝑖) of the geo-objects 𝑔𝑔𝑔𝑔𝑖𝑖  ∈  𝐺𝐺𝐺𝐺. 

3.2.2.3. Spatial selection 
Definition 3.2.6  Let 𝑅𝑅 be a geographical region, 𝐺𝐺𝐺𝐺 a set of geo-objects and 𝑚𝑚𝑚𝑚 an object-map 𝑚𝑚𝑚𝑚 =
 [𝑅𝑅,𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔𝑔𝑔1] which contains the spatial location of the geo-objects 𝑔𝑔𝑔𝑔 ∈  𝐺𝐺𝐺𝐺 in 𝑅𝑅. 
The spatial selection operation 𝜑𝜑 ∶  𝐺𝐺𝐺𝐺 → 𝐺𝐺𝐺𝐺, given a spatial predicate 𝐱𝐱 which relates the geo-objects 𝑔𝑔𝑔𝑔 ∈
 𝐺𝐺𝐺𝐺 to a geo-object 𝑔𝑔𝑔𝑔∗ which is represented in 𝑚𝑚𝑚𝑚 by a mapping 𝑔𝑔𝑔𝑔𝑔𝑔2(𝑔𝑔𝑔𝑔∗): 
𝜑𝜑𝜉𝜉(𝐺𝐺𝐺𝐺)  =  { 𝑔𝑔𝑔𝑔 ∈  𝐺𝐺𝐺𝐺 | 𝜉𝜉(𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔𝑔𝑔)) }. 
The output of such operation is a subset of the original set, composed of all geo-objects that satisfy the geome-
trical predicate, as in the following example: 
· “select all counties of Srbija which are adjacent to the Severna Bačka municipalities (which contains the city 
of Subotica)”. 
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3.2.2.4. Spatial Join 
Definition 3.2.7  Let 𝑅𝑅 be a geographical region, 𝐺𝐺𝐺𝐺1 and 𝐺𝐺𝐺𝐺2 two sets of geo-objects and 𝑚𝑚𝑚𝑚1 and 𝑚𝑚𝑚𝑚2 object-
maps 𝑚𝑚𝑚𝑚𝑖𝑖 = [𝑅𝑅,𝐺𝐺𝐺𝐺𝑖𝑖 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖] which contain, respectively, the spatial location of the geo-objects 𝑔𝑔𝑔𝑔1 ∈ 𝐺𝐺𝐺𝐺1 and 
𝑔𝑔𝑔𝑔2 ∈ 𝐺𝐺𝐺𝐺2 in 𝑅𝑅. Let 𝐱𝐱 be a spatial predicate computable for every pair of geographical locations 
((𝑔𝑔𝑔𝑔𝑔𝑔1(𝑔𝑔𝑔𝑔1),𝑔𝑔𝑔𝑔𝑔𝑔2(𝑔𝑔𝑔𝑔2)). The spatial join operation 𝜃𝜃: 𝐺𝐺𝑂𝑂1  ×  𝐺𝐺𝐺𝐺2  →  𝐺𝐺𝐺𝐺1  ×  𝐺𝐺𝐺𝐺2 is such that: 

𝜃𝜃𝜉𝜉  (𝐺𝐺𝐺𝐺1,𝐺𝐺𝐺𝐺2)  =  { (𝑔𝑔𝑔𝑔1,  𝑔𝑔𝑔𝑔2)  ∈  (𝐺𝐺𝐺𝐺1,𝐺𝐺𝐺𝐺2) | 𝜉𝜉 ((𝑔𝑔𝑔𝑔𝑔𝑔1(𝑔𝑔𝑔𝑔1),𝑔𝑔𝑔𝑔𝑔𝑔2(𝑔𝑔𝑔𝑔2) ) }. 
The spatial join is an operation where a comparison between two sets of geo-objects 𝐺𝐺𝐺𝐺1 and 𝐺𝐺𝐺𝐺2 takes place, 
based on a spatial predicate which is computed over the representation of these sets. The name “spatial join” is 
employed by analogy to the join operation in relational algebra. The result of the spatial join operation is a set 
of object-pairs, which satisfy the spatial restriction. Examples are: 

• “Find all villages located closer than 50 km to the main roads in Vojvodina”. 
• “Find all cities in the Province of Vojvodina which are located closer than 10 km from a water reser-

voir.” 

In the first example, the answer is a set of pairs of geo-objects (village, road) and in the second a set of pairs 
(cities, water reservoir). 

3.2.3. Transformations between Geo-Fields and Geo-objects 
Another set of operations for geographical data concerns the transformations that generate geo-fields from sets 
of geo-objects (and vice-versa). These transformation operations are of special importance, as they are the link 
between the two general classes of geographical data. 

3.2.3.1. Generation of Geo-Objects from Geo-Fields 
As an example of one important instance of such operations, we shall present spatial interpolation. 
Definition 3.2.8 Let 𝑅𝑅 be a geographical region, 𝑉𝑉1,𝑉𝑉2, . .𝑉𝑉𝑛𝑛 sets which define possible ranges for geo-fields, 
and 𝐹𝐹𝑖𝑖  (𝑖𝑖 = 1, . . ,𝑛𝑛) be the class of all geo-fields which have 𝑅𝑅 as a location and 𝑉𝑉𝑖𝑖 as its range. Let 𝐺𝐺𝐺𝐺 be a set 
of geo-objects and 𝑚𝑚𝑚𝑚 be an object-map 𝑚𝑚𝑚𝑚 = [𝑅𝑅,𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔𝑔𝑔] which assigns geographical locations in 𝑅𝑅 to the 
geo-objects in 𝐺𝐺𝐺𝐺. 
The spatial interpolation operation ⨂: 𝐹𝐹1  × . . .×  𝐹𝐹𝑛𝑛  →  𝐺𝐺𝐺𝐺 is such that: 

∀ 𝑓𝑓1  ∈  𝐹𝐹1, … ,  𝑓𝑓𝑛𝑛  ∈  𝐹𝐹𝑛𝑛,  
⨂(𝑓𝑓1,𝑓𝑓2, . . . , 𝑓𝑓𝑛𝑛)  =  𝐺𝐺𝐺𝐺 ⇔  ∀𝑔𝑔𝑔𝑔 ∈  𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔 =  [ 𝑣𝑣1, . . . , 𝑣𝑣𝑚𝑚,𝑎𝑎𝑚𝑚+1, . . , 𝑎𝑎𝑛𝑛,𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔𝑔𝑔)], and 
𝑔𝑔𝑔𝑔𝑔𝑔 (𝑔𝑔𝑔𝑔) =  { 𝑝𝑝 ∈  𝑅𝑅 |𝑓𝑓1(𝑝𝑝) =  𝑣𝑣1  ∧  …∧ 𝑓𝑓𝑛𝑛(𝑝𝑝)  =  𝑣𝑣𝑛𝑛 }. 
This definition corresponds to the generation of an object map from the spatial intersection of a set of geo-fields. 
This situation occurs, for example, in zoning applications, when an overlay of thematic maps is performed to 
obtain homogeneous zones. When a cadastral map is created from an overlay of geo-fields, each resulting geo-
object inherits all descriptive attributes from the original geo-fields. 
 One example of interpolation is: Determine the homogeneous regions of Vojvodina as the intersection of the 
vegetation, geomorphology, and soils maps. 

3.2.3.2. Generation of Geo-Fields from Geo-Objects 
These operations take as input a set of geo-objects 𝐺𝐺𝐺𝐺, represented in the geo-objects map 𝑚𝑚𝑚𝑚 and generate as 
output a field 𝑓𝑓1, defined on a map 𝑀𝑀 by a mapping 𝜆𝜆: 𝑀𝑀 → 𝑉𝑉. We shall consider two operations, that of distance 
maps (buffer zones) and that of attribute reclassification. 

Buffer zones operation 

Definition 3.2.9. Let 𝑅𝑅 be a geographical region, 𝐹𝐹 a set of geo-fields defined over 𝑅𝑅 whose range is +. Let 𝐺𝐺𝐺𝐺 
be a set of geoobjects, and 𝑚𝑚𝑚𝑚 an object-map 𝑚𝑚𝑚𝑚 =  [𝑅𝑅,𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔𝑔𝑔], which assigns geographical locations in 𝑅𝑅 
to the geo-objects in 𝐺𝐺𝐺𝐺. 
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The buffer zones operation Δ: 𝐺𝐺𝐺𝐺 →  𝐺𝐺 induced by 𝑚𝑚𝑚𝑚 is such that, given a distance metric 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 computable in 
𝑚𝑚𝑚𝑚 and an object 𝑔𝑔𝑔𝑔 ∈  𝐺𝐺𝐺𝐺: 
∆𝑚𝑚𝑚𝑚(𝑔𝑔𝑔𝑔)  =  𝑓𝑓 ⇔  ∀𝑝𝑝 ∈  𝑅𝑅, 𝑓𝑓(𝑝𝑝)  =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔𝑔𝑔)). 

Attribute reclassification operation 

Definition 3.2.10 Let 𝑅𝑅 be a geographical region, 𝐺𝐺𝐺𝐺 be a set of geo-objects whose descriptive attributes are 
contained in 𝐷𝐷(𝐴𝐴1)  × . . .×  𝐷𝐷(𝐴𝐴𝑛𝑛), and 𝑚𝑚𝑚𝑚 an object-map 𝑚𝑚𝑚𝑚 =  [𝑅𝑅,𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔𝑔𝑔], which assigns geographical 
locations in 𝑅𝑅 to the geo-objects in 𝐺𝐺𝐺𝐺. 
Let 𝐹𝐹 a set of geo-fields defined over 𝑅𝑅 whose range is 𝐷𝐷(𝐴𝐴𝑖𝑖), where 𝐴𝐴𝑖𝑖 is the 𝑖𝑖 −th descriptive attribute of 𝐺𝐺𝐺𝐺. 
The attribute reclassification operation Ω: 𝐺𝐺𝐺𝐺 →  𝐹𝐹 induced by 𝑚𝑚𝑚𝑚 is such that: 
Ω𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺)  =  𝑓𝑓0  ⇔  (∀ 𝑔𝑔𝑔𝑔 ∈  𝐺𝐺𝐺𝐺,  𝑓𝑓0 (𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔𝑔𝑔))  =  𝑔𝑔𝑔𝑔.𝐴𝐴𝑖𝑖). 
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4. Class model of the complex fuzzy spatial object 
Atlas Platform class model of the complex spatial object relies upon two basic models: 

• Linear fuzzy space model proposed in [1, 3], 
• Formal object model of the geographic data proposed in [2]. 

The fundamental concept of the complex spatial object in our model is the composite object. 

4.1. Composite object 
An object o can be constructed out of other objects o1, ...on, in which case o is called composite and o1, ...on 
are called the components of o. If an object is not composite, then it is called simple.  
In our model, classes can be structured into hierarchies; the ancestors of a class 𝐶𝐶 in the hierarchy are called 
the superclasses of 𝐶𝐶. 
The real world is modelled as a collection of object-oriented classes, classified as conventional classes and 
spatial classes (i.e.,  geo-classes). The spatial classes model spatial fields and objects, while the conventional 
classes correspond to classes whose instances are non-spatial objects. 
The same entity might be modelled as a part of spatial class or as part of a standard class, depending on the 
situation.  
Each spatial class of objects has both locational and conventional attributes.  
The conventional attributes are assumed to be derived from a universe 𝑼𝑼 of descriptive attributes {𝐴𝐴1, . . . ,𝐴𝐴𝑛𝑛}, 
defined on domains 𝐷𝐷(𝐴𝐴1), . . . ,𝐷𝐷(𝐴𝐴𝑛𝑛).  

4.1.1. Basic model hierarchy 
The basic model hierarchy recognizes following classes: Fuzzy Spatial Region, Fuzzy Spatial Field, Fuzzy 
Spatial Object, and Fuzzy Spatial Object Map. 

Fuzzy Spatial Region 

Definition 4.1.  Fuzzy polygon in ℝ2 linear fuzzy space is called a fuzzy spatial region. 

Fuzzy Spatial Field  

A fuzzy spatial field represents a continuous spatial variable over some fuzzy region of the space.  
Definition 4.2. Let 𝑅𝑅 be a fuzzy spatial region. A fuzzy spatial field 𝑓𝑓 is an object [𝑎𝑎1, . . .𝑎𝑎𝑛𝑛, 𝜆𝜆 ], where 𝑎𝑎𝑖𝑖 ∈
𝐷𝐷(𝐴𝐴𝐴𝐴) and 𝜆𝜆 ∶   𝑅𝑅 →  𝑉𝑉  defines a fuzzy mapping between fuzzy points in 𝑅𝑅 and fuzzy values on a domain 𝑉𝑉. 
The fuzzy spatial fields can also  be specialized. Depending on the range of the variable, the following sub-
classes of GEO-FIELD are defined analogously to the original object model of geographic data: 

• NUMERICAL - an instance of this class defines a mapping 𝜆𝜆: 𝑅𝑅 →  𝑉𝑉 such that 𝑉𝑉 is the set of fuzzy 
real numbers. 

• LINGUISTIC – an  instance of this class defines a mapping 𝜆𝜆: 𝑅𝑅 →  𝑉𝑉  such that 𝑉𝑉 is the set of lin-
guistic variables defined by corresponding fuzzy sets. 

  

Fuzzy Spatial Object 

Fuzzy spatial objects represent individualizable entities of some spatially determined domain. They are phe-
nomena that may have one or more graphical representations, which correspond to the (in the case of envi-
ronmental science most often geo-referenced) set of coordinates that describe the object’s location. 
Definition 4.3. Given a set of fuzzy regions 𝑅𝑅1, . . .𝑅𝑅𝑛𝑛, a fuzzy spatial object 𝑔𝑔𝑔𝑔 is an object 
[𝑎𝑎1, . . .𝑎𝑎𝑛𝑛,𝑔𝑔𝑔𝑔𝑔𝑔1, . . . ,𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛], composed by the values 𝑎𝑎𝑖𝑖 ∈ 𝐷𝐷(𝐴𝐴𝐴𝐴)  and by a set of spatial locations 𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 (where 
𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖  ⊆  𝑅𝑅𝑖𝑖).  
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Fuzzy Object Maps 

Definition 4.4. Let 𝑅𝑅 be a fuzzy region. A fuzzy object map 𝑚𝑚𝑚𝑚 is an object [𝑅𝑅,𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔𝑔𝑔] such that 𝐺𝐺𝐺𝐺 is a 
set of fuzzy spatial objects and 𝑔𝑔𝑔𝑔𝑔𝑔 is a mapping 𝐺𝐺𝐺𝐺 →  𝑅𝑅, which assigns, for each fuzzy spatial object 𝑔𝑔𝑔𝑔 ∈
 𝐺𝐺𝐺𝐺, a fuzzy location 𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔𝑔𝑔) in 𝑅𝑅. 

4.1.2. Operations on fuzzy spatial data 

In our model we define two main types of spatial algebras, defining operations on spatial data: 

• Fuzzy Fields algebra: operations aimed at manipulation of fuzzy fields. 
• Fuzzy Spatial Objects algebra: operations aimed at querying spatial objects in terms of descriptive and 

spatial properties. 

4.1.2.1. Fuzzy Fields algebra 
There are two basic types of fuzzy field operators in our model: point and neighbourhood. 

Point operators 

Based on input fuzzy spatial fields, this operator produces a new fuzzy spatial field with value in each point 𝑝𝑝 
depending only on the values in 𝑝𝑝 in the input spatial fields. Point operations are specified as a mapping be-
tween the ranges of the input and output fields. Formal definition follows. 

Definition 4.5. Let 𝑅𝑅 be a fuzzy spatial region, 𝑉𝑉1 ,𝑉𝑉2, . .𝑉𝑉𝑛𝑛+1 be the sets which define possible ranges for 
fuzzy spatial fields, and 𝐹𝐹𝑖𝑖  (𝑖𝑖 = 1, . . ,𝑛𝑛 + 1) be the class of all fuzzy spatial fields which have 𝑅𝑅 as a location 
and 𝑉𝑉𝑖𝑖 as its range. The point operation Π: 𝐹𝐹1  ×  𝐹𝐹2  𝐹𝐹𝑛𝑛+1 induces a function 𝑝𝑝 such that, for every fuzzy 
spatial field 𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑖𝑖  (𝑖𝑖 = 1, . . ,𝑛𝑛): 

𝑓𝑓𝑛𝑛+1(𝑝𝑝)  =  𝑝𝑝 (𝑓𝑓1(𝑝𝑝), . . . ,  𝑓𝑓𝑛𝑛(𝑝𝑝)),∀ 𝑝𝑝 ∈  𝑅𝑅  

where the spatial values of the output fuzzy spatial field 𝑓𝑓𝑛𝑛+1 ∈  𝐹𝐹𝑛𝑛+1 are defined by the mapping 𝜆𝜆𝑛𝑛+1: 𝑀𝑀 →
𝑉𝑉𝑛𝑛+1. 

Neighbourhood operators  

In this class of operators, the output fuzzy field is computed based on the values of a continuously-varying 
surface in the neighbourhood of each location of the input fuzzy field. What follows is the formal definition of 
the neighbourhood operations on fuzzy spatial fields preceded by the definition of the concept neighbourhood 
in fuzzy spatial region. 
Definition 4.6. Given a fuzzy region 𝑅𝑅, a set of 𝑃𝑃 ⊆  𝑅𝑅 is said to be connected iff, for any two fuzzy points 
𝑝𝑝1,𝑝𝑝2 ∈ 𝑃𝑃 there is a fuzzy line connecting these two points which is fuzzy-entirely contained in 𝑅𝑅. A neigh-
bourhood in 𝑅𝑅 is a mapping 𝑁𝑁: 𝑅𝑅 →  2𝑅𝑅, such that ∀ 𝑝𝑝 ∈ 𝑅𝑅, 𝑝𝑝 ∈ 𝑁𝑁(𝑝𝑝) and 𝑁𝑁(𝑝𝑝) are fuzzy connected. 
Definition 4.7. Let R be a fuzzy region and 𝐹𝐹0  and 𝐹𝐹1 the sets of fuzzy spatial fields which are defined over R 
and whose range is 𝑉𝑉𝑖𝑖 , 𝑖𝑖 =  0, 1. Let 𝑁𝑁: 𝑅𝑅 →  2𝑅𝑅 and 𝜐𝜐: 2𝑉𝑉1  →  𝑉𝑉0. The neighbourhood operation 𝛹𝛹: 𝐹𝐹1 →   𝐹𝐹0  
induced by 𝜐𝜐 is such that: 
∀𝑓𝑓1  ∈  𝐹𝐹1 ,𝛹𝛹( 𝑓𝑓1)  =  𝑓𝑓0  ⇔  𝑓𝑓0 (𝑝𝑝)  =  𝜐𝜐 ({𝜆𝜆1(𝑥𝑥) | 𝑥𝑥 ∈  𝑁𝑁(𝑝𝑝)}),∀ 𝑝𝑝 ∈  𝑅𝑅. 
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4.1.2.2. Fuzzy spatial objects algebra 
Spatial Relationships 
In the proposed model, fuzzy spatial objects are represented as 2D fuzzy geometries (points, lines and re-
gions). As the operations of the fuzzy spatial objects algebra may involve spatial restrictions, the model de-
fines spatial relationships divided in following categories: 

• Fuzzy topological relationships, such as “fuzzy inside” and “fuzzy adjacent to”, which are invariant to 
transformations fuzzy rotation, fuzzy translation, and fuzzy scaling transformations.  

• Fuzzy directional relationships, such as “fuzzy above”, “fuzzy bellow”, “fuzzy left”, “fuzzy right”, 
and “fuzzy beside”.   

• Fuzzy metrical relationships, derived from the fuzzy distance operations. 
In our model, topological and metrical relationships on 𝑅𝑅2 are considered, based on the following definitions: 

• A fuzzy area 𝐴𝐴 is one of the following: a fuzzy point, a fuzzy line, a fuzzy circle or a fuzzy polygon,  in 
linear fuzzy space. 

• A fuzzy line 𝐿𝐿 is a fuzzy line in linear fuzzy space. 
• A fuzzy point 𝑃𝑃 is a fuzzy point in linear fuzzy space. 

So far, we propose a minimal set of two relationships (𝒊𝒊𝒊𝒊 and 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) which are applicable to all cases. The 
formal definitions of these relationships are given below. 
The in relationship is applicable to cases  point-point, area-area, line-area, point-area and point-line situa-
tions. A fuzzy spatial object 𝑆𝑆1  is 𝒊𝒊𝒊𝒊 a fuzzy spatial object 𝑆𝑆2 when following holds: 

• point-point situation: Objects 𝑆𝑆1 and 𝑆𝑆2 satisfy spatial relation  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 in linear fuzzy space.  
• point-line situation: Objects 𝑆𝑆1 and 𝑆𝑆2 satisfy spatial relation  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 in linear fuzzy space. 
• point-area situation: Fuzzy point 𝑆𝑆1 is in fuzzy polygon 𝑆𝑆2 if the core of the point 𝑆𝑆1 is  inside the 

fuzzy polygon 𝑆𝑆2  including the support of the fuzzy polygon 𝑆𝑆2. 
• line-area situation: Fuzzy line 𝑆𝑆1 is in fuzzy polygon 𝑆𝑆2 if the start and end points of the line 𝑆𝑆1 are 

completely inside the fuzzy polygon 𝑆𝑆2  including the support of the 𝑆𝑆2.  
• area-area situation: Fuzzy polygon 𝑆𝑆1 is in fuzzy polygon 𝑆𝑆2  if the support of the  fuzzy polygon 𝑆𝑆1 

is completely inside the fuzzy polygon 𝑆𝑆2  including the support of the 𝑆𝑆2 . 

The 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 relationship is applicable in the case of line-line and line-area situations.  
• Line-line situation: Line 𝑆𝑆1  crosses a line 𝑆𝑆2  if 

o Start and end points of the lines  𝑆𝑆1  and 𝑆𝑆2 do not satisfy relation 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 in linear fuzzy 
space. 

o There is at least one point with a core in the fuzzy set 𝑆𝑆1 and in the fuzzy set 𝑆𝑆2. 

Spatial operations 
To define the spatial operations over fuzzy spatial objects, we first define the notion of a computable fuzzy 
spatial predicate. 
Definition 4.8. Let 𝑅𝑅 be a fuzzy region, and 𝐺𝐺𝐺𝐺 a set of fuzzy spatial objects which have representations in 𝑅𝑅, 
defined by an object map 𝑜𝑜𝑜𝑜 = [𝑅𝑅,𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔𝑔𝑔]. A computable fuzzy spatial predicate 𝐱𝐱 is a spatial restriction, 
defined by a topological relationship (fuzzy inside, fuzzy cross) or a metrical relationship as defined in fuzzy 
linear space, which can be computed over the representations 𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔𝑔𝑔𝑖𝑖) of the fuzzy spatial objects 𝑔𝑔𝑔𝑔𝑖𝑖  ∈
 𝐺𝐺𝐺𝐺. 
Next, we define two fuzzy spatial operations: fuzzy spatial selection and fuzzy spatial join. 
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Fuzzy spatial selection 
Definition 4.9. Let 𝑅𝑅 be a fuzzy region, 𝐺𝐺𝐺𝐺 a set of fuzzy spatial objects and 𝑚𝑚𝑚𝑚 an fuzzy spatial object map 
𝑚𝑚𝑚𝑚 =  [𝑅𝑅,𝐺𝐺𝐺𝐺,𝑔𝑔𝑔𝑔𝑔𝑔1] which contains the fuzzy spatial location of the spatial objects 𝑔𝑔𝑔𝑔 ∈  𝐺𝐺𝐺𝐺 in 𝑅𝑅. 
The fuzzy spatial selection operation 𝜑𝜑 ∶  𝐺𝐺𝐺𝐺 → 𝐺𝐺𝐺𝐺, given a spatial predicate 𝐱𝐱 which relates the fuzzy spatial 
objects 𝑔𝑔𝑔𝑔 ∈  𝐺𝐺𝐺𝐺 to a fuzzy spatial object 𝑔𝑔𝑔𝑔∗ which is represented in 𝑚𝑚𝑚𝑚 by a mapping 𝑔𝑔𝑔𝑔𝑔𝑔2(𝑔𝑔𝑔𝑔∗) is: 
𝜑𝜑𝜉𝜉(𝐺𝐺𝐺𝐺)  =  { 𝑔𝑔𝑔𝑔 ∈  𝐺𝐺𝐺𝐺 | 𝜉𝜉(𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔𝑔𝑔)) }. 
The output of such operation is a fuzzy subset of the original fuzzy set, composed of all fuzzy spatial objects 
that satisfy the geometrical predicate, as in the following example: 
· “select all counties of Srbija which are to some extent adjacent to the Severna Bačka municipalities (which 
contains to some extent the city of Subotica)”. 
Fuzzy spatial join 
Definition 4.10. Let 𝑅𝑅 be a fuzzy region, let  𝐺𝐺𝐺𝐺1 and 𝐺𝐺𝐺𝐺2  be two sets of fuzzy spatial objects, and let  𝑚𝑚𝑚𝑚1 
and 𝑚𝑚𝑚𝑚2 be fuzzy spatial object maps 𝑚𝑚𝑚𝑚𝑖𝑖 = [𝑅𝑅,𝐺𝐺𝐺𝐺𝑖𝑖 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖] which contain, respectively, the fuzzy spatial lo-
cation of the spatial fuzzy objects 𝑔𝑔𝑔𝑔1 ∈ 𝐺𝐺𝐺𝐺1 and 𝑔𝑔𝑔𝑔2 ∈ 𝐺𝐺𝐺𝐺2 in 𝑅𝑅. Let 𝐱𝐱 be a fuzzy spatial predicate computa-
ble for every pair of spatial locations ((𝑔𝑔𝑔𝑔𝑔𝑔1(𝑔𝑔𝑔𝑔1),𝑔𝑔𝑔𝑔𝑔𝑔2(𝑔𝑔𝑔𝑔2)). The spatial join operation 𝜃𝜃: 𝐺𝐺𝐺𝐺1  ×  𝐺𝐺𝐺𝐺2  →
 𝐺𝐺𝐺𝐺1  ×  𝐺𝐺𝐺𝐺2 is such that: 

𝜃𝜃𝜉𝜉  (𝐺𝐺𝐺𝐺1,𝐺𝐺𝐺𝐺2)  =  { (𝑔𝑔𝑔𝑔1,  𝑔𝑔𝑔𝑔2)  ∈  (𝐺𝐺𝐺𝐺1,𝐺𝐺𝐺𝐺2) | 𝜉𝜉 ((𝑔𝑔𝑔𝑔𝑔𝑔1(𝑔𝑔𝑔𝑔1),𝑔𝑔𝑔𝑔𝑔𝑔2(𝑔𝑔𝑔𝑔2) ) }. 
The spatial join is an operation where two sets of fuzzy spatial objects 𝐺𝐺𝐺𝐺1 and 𝐺𝐺𝐺𝐺2 are compared, based on a 
fuzzy spatial predicate computed over the representation of these sets. The result is a set of object pairs, which 
satisfy the spatial restriction to some extent while, at the same time, objects individually satisfy spatial loca-
tion restriction to some extent. Examples are: 

• “Find all air quality measurement facilities located very near to the main roads in Vojvodina”. 

In general case, the answer to this query is a set of pairs of spatial objects (facilities, roads) where 
facilities is an object that is air quality measurement facilities to some extent,  located in Vojvodina 
to some extent, roads is an object that is main road to some extent also located in Vojvodina to some 
extent and, finally, those two objects are very near to each other to some extent.  
  



21 

5. Concluding remarks 
This report proposes a conceptual model of the complex fuzzy spatial objects within the ATLAS 
platform. The proposed model provides for representing composite, highly complex spatial objects 
described with spatial and  non-spatial properties that include uncertainty, imprecision, and vagueness. 
The proposed model relies on object paradigm, more precisely class pattern. 
The indisputable advantage of the proposed model is its ability to incorporate uncertainty and imprecision 
when describing spatial and non-spatial properties of the system under modelling. 
From the other hand, reliance on the class pattern could be considered a notable disadvantage that introduces 
serious restrictions on composite structure. Therefore, we are planning further research that will replace class-
based inheritance with a prototype-based one.    
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